Skip to main content

Dynamic Pipeline is a high-level API to help data scientists building models in ensemble way, and automating Machine Learning workflow with simple coding.

Project description

Dynamic Pipeline

PyPI Latest Release Github Issues License Last Commit Python Version

Author: Tony Dong

Dynamic Pipeline is a high-level API toolkit to help data scientists building models in ensemble way, and automating Machine Learning workflow with simple codes.

Comparing other popular "AutoML or Automatic Machine Learning" APIs, Dynamic Pipeline is designed as an omni-ensembled ML workflow optimizer with higher-level API targeting to avoid manual repetitive train-along-evaluate experiments in general pipeline building.

To achieve that, Dynamic Pipeline applies Pipeline Cluster Traversal Experiments algorithm to assemble all cross-matching pipelines covering major tasks of Machine Learning workflow, and apply traversal-experiment to search the optimal model. Besides, by modularizing all key pipeline components in reuseable packages, it allows all components to be custom tunable along with high scalability.

The core concept in Dynamic Pipeline is Pipeline Cluster Traversal Experiments, which is a theory, first raised by Tony Dong during Genpact 2020 GVector Conference, to optimize and automate Machine Learning Workflow using ensemble pipelines algorithm.

Comparing other automatic or classic machine learning workflow's repetitive experiments using single pipeline, Pipeline Cluster Traversal Experiments is more powerful, with larger coverage scope, to find the best model without manual intervention, and also more flexible with elasticity to cope with unseen data due to its ensemble designs in each component.

Documentation: https://dynamic-pipeline.readthedocs.io/

Installation

pip install dynapipe

License:

MIT 漏Tony Dong

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for dynapipe, version 0.2.3
Filename, size File type Python version Upload date Hashes
Filename, size dynapipe-0.2.3.tar.gz (19.4 kB) File type Source Python version None Upload date Hashes View
Filename, size dynapipe-0.2.3-py3-none-any.whl (23.6 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page