Skip to main content

A DynamoDB library on top of Pydantic and boto3.

Project description

dyntastic

CI codecov pypi license

A DynamoDB library on top of Pydantic and boto3.

Installation

pip3 install dyntastic

If the Pydantic binaries are too large for you (they can exceed 90MB), use the following:

pip3 uninstall pydantic  # if pydantic is already installed
pip3 install dyntastic --no-binary pydantic

Usage

The core functionality of this library is provided by the Dyntastic class.

Dyntastic is a subclass of Pydantic's BaseModel, so can be used in all the same places a Pydantic model can be used (FastAPI, etc).

import uuid
from datetime import datetime
from typing import Optional

from dyntastic import Dyntastic
from pydantic import Field

class Product(Dyntastic):
    __table_name__ = "products"
    __hash_key__ = "product_id"

    product_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
    name: str
    description: Optional[str] = None
    price: float
    tax: Optional[float] = None


class Event(Dyntastic):
    __table_name__ = "events"
    __hash_key__ = "event_id"
    __range_key__ = "timestamp"

    event_id: str
    timestamp: datetime
    data: dict

# All your favorite pydantic functionality still works:

p = Product(name="bread", price=3.49)
# Product(product_id='d2e91c30-e701-422f-b71b-465b02749f18', name='bread', description=None, price=3.49, tax=None)

p.dict()
# {'product_id': 'd2e91c30-e701-422f-b71b-465b02749f18', 'name': 'bread', 'description': None, 'price': 3.49, 'tax': None}

p.json()
# '{"product_id": "d2e91c30-e701-422f-b71b-465b02749f18", "name": "bread", "description": null, "price": 3.49, "tax": null}'

Inserting into DynamoDB

Using the Product example from above, simply:

product = Product(name="bread", description="Sourdough Bread", price=3.99)
product.product_id
# d2e91c30-e701-422f-b71b-465b02749f18

# Nothing is written to DynamoDB until .save() is called:
product.save()

Getting Items from DynamoDB

Product.get("d2e91c30-e701-422f-b71b-465b02749f18")
# Product(product_id='d2e91c30-e701-422f-b71b-465b02749f18', name='bread', description="Sourdough Bread", price=3.99, tax=None)

The range key must be provided if one is defined:

Event.get("d2e91c30-e701-422f-b71b-465b02749f18", "2022-02-12T18:27:55.837Z")

Consistent reads are supported:

Event.get(..., consistent_read=True)

A DoesNotExist error is raised by get if a key is not found:

Product.get("nonexistent")
# Traceback (most recent call last):
#   ...
# dyntastic.exceptions.DoesNotExist

Use safe_get instead to return None if the key is not found:

Product.safe_get("nonexistent")
# None

Querying Items in DynamoDB

# A is shorthand for the Attr class (i.e. attribute)
from dyntastic import A

# auto paging iterable
for event in Event.query("some_event_id"):
    print(event)


Event.query("some_event_id", per_page=10)
Event.query("some_event_id")
Event.query("some_event_id", range_key_condition=A.timestamp < datetime(2022, 2, 13))
Event.query("some_event_id", filter_condition=A.some_field == "foo")

# query an index
Event.query(A.my_other_field == 12345, index="my_other_field-index")

# note: Must provide a condition expression rather than just the value
Event.query(123545, index="my_other_field-index")  # errors!

# consistent read
Event.query("some_event_id", consistent_read=True)

If you need to manually handle pagination, use query_page:

page = Event.query_page(...)
page.items
# [...]
page.has_more
# True
page.last_evaluated_key
# {"event_id": "some_event_id", "timestamp": "..."}

Event.query_page(..., last_evaluated_key=page.last_evaluated_key)

Scanning Items in DynamoDB

Scanning is done identically to querying, except there are no hash key or range key conditions.

# auto paging iterable
for event in Event.scan():
    pass

Event.scan((A.my_field < 5) & (A.some_other_field.is_in(["a", "b", "c"])))
Event.scan(..., consistent_read=True)

Updating Items in DynamoDB

Examples:

my_item.update(A.my_field.set("new_value"))
my_item.update(A.my_field.set(A.another_field))
my_item.update(A.my_int.set(A.another_int - 10))
my_item.update(A.my_int.plus(1))
my_item.update(A.my_list.append("new_element"))
my_item.update(A.some_attribute.set_default("value_if_not_already_present"))

my_item.update(A.my_field.remove())
my_item.update(A.my_list.remove(2))  # remove by index

my_item.update(A.my_string_set.add("new_element"))
my_item.update(A.my_string_set.add({"new_1", "new_2"}))
my_item.update(A.my_string_set.delete("element_to_remove"))
my_item.update(A.my_string_set.delete({"remove_1", "remove_2"}))

The data is automatically refreshed after the update request. To disable this behavior, pass refresh=False:

my_item.update(..., refresh=False)

Supports conditions:

my_item.update(..., condition=A.my_field == "something")

By default, if the condition is not met, the update call will be a noop. To instead error in this situation, pass require_condition=True:

my_item.update(..., require_condition=True)

Batch Reads

Multiple items can be read from a table at the same time using the batch_get function.

Note that DynamoDB limits the number of items that can be read at one time to 100 items or 16MB, whichever comes first.

Note that if any of the provided keys are missing from dynamo, they will simply be excluded in the result set.

MyModel.batch_get(["hash_key_1", "hash_key_2", "hash_key_3"])
# => [MyModel(...), MyModel(...)]

For models with a range key defined:

MyModel.batch_get([("hash_key_1", "range_key_1"), ("hash_key_2", "range_key_2")])
# => [MyModel(...), MyModel(...)]

Batch Writes

Save and delete operations may also be performed in batches.

Note that DynamoDB limits the number of items that can be written in a single batch to 25 items or 16MB, whichever comes first. Dyntastic will automatically batch in chunks of 25, or less if desired.

with MyModel.batch_writer():
    MyModel(id="0").delete()
    MyModel(id="1").save()
    MyModel(id="2").save()

# all operations are performed once the `with` context is exited

To configure a smaller batch size, for example when each item is relatively large:

with MyModel.batch_writer(batch_size=2):
    MyModel(id="1").save()
    MyModel(id="2").save()
    # the previous two models are written immediately, since the batch size was reached
    MyModel(id="3).save()

# The final operation is performed here now that the `with` context has exited

Create a DynamoDB Table

This functionality is currently meant only for use in unit tests as it does not support configuring throughput.

To create a table with no secondary indexes:

MyModel.create_table()

# Do not wait until the table creation is complete (subsequent operations
# may error if they are performed before the table creation is finished)
MyModel.create_table(wait=False)

To define global secondary indexes (creating local secondary indexes is not currently supported):

# All of the following are equivalent
index1 = "my_field"
index1 = Index("my_field")
index1 = Index("my_field", index_name="my_field-index")

# Range keys are also supported
index2 = Index("my_field", "my_second_field")
index2 = Index("my_field", "my_second_field", index_name="my_field_my_second_field-index")

MyModel.create_table(index1, index2)

Changelog

0.8.1 2022-11-08

  • Fixed batch_read to support non-string hash keys

0.8.0 2022-10-12

  • Add py.typed marker to indicate this library ships with type hints

0.7.0 2022-10-11

  • No changes since 0.7.0a1

0.7.0a1 2022-10-08

  • Change dependency version pinning to be more flexible
  • Only require importlib_metadata for python3.7 and earlier

0.6.0 2022-09-17

  • Added support for __table_name__ being a Callable[[], str] to allow dynamic table name
  • Added support for batch reads and writes
  • Fixed consistent_read behavior for safe_get (previously was always set to True)

0.5.0 2022-05-09

  • Added support for multiple subclasses within one table (get_model function)

0.4.1 2022-04-26

  • Fixed serialization of dynamo types when using Pydantic aliases

0.4.0 2022-04-26

  • Fixed compatibility with Pydantic aliases

0.3.0 2022-04-25

  • Added support for nested attribute conditions and update expressions
  • Fixed bug where refresh() would cause nested Pydantic models to be converted to dictionaries instead of loaded into their models
  • Added Pydantic aliases (models will all be dumped using pydantic's by_alias=True flag).

0.2.0 2022-04-23

BREAKING: Accessing attributes after calling update(..., refresh=False) will trigger a ValueError. Read below for more information.

  • Added built in safety for unrefreshed instances after an update. Any attribute accesses on an instance that was updated with refresh=False will raise a ValueError. This can be fixed by calling refresh() to get the most up-to-date data of the item, or by calling ignore_unrefreshed() to explicitly opt-in to using stale data.

0.1.0 2022-02-13

  • Initial release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dyntastic-0.8.1.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

dyntastic-0.8.1-py3-none-any.whl (14.9 kB view details)

Uploaded Python 3

File details

Details for the file dyntastic-0.8.1.tar.gz.

File metadata

  • Download URL: dyntastic-0.8.1.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.15

File hashes

Hashes for dyntastic-0.8.1.tar.gz
Algorithm Hash digest
SHA256 20b093f7e2aa3d7a37bbf946cd429d650f4ce4d660a1a9aad82add68b8de1b1e
MD5 992545c31bfa4566577db2d2edac49f3
BLAKE2b-256 ff34979f0e4781c8d488fb5e9efee0ccf6d137cb7155b53e9a03c7761542b736

See more details on using hashes here.

File details

Details for the file dyntastic-0.8.1-py3-none-any.whl.

File metadata

  • Download URL: dyntastic-0.8.1-py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.15

File hashes

Hashes for dyntastic-0.8.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a3c3873d208341f1c184471470de8a2c1fd0ec283215acdd332ababdfaa869be
MD5 793e39babdfd03788b104e0e59379180
BLAKE2b-256 817061564e96d0fd7c0d7288851d23b106cefe081aa481bda5a1228d6fd1789c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page