Skip to main content

Python package for the study of particle dynamics from 2D tracks

Project description

PyPI Documentation Status Build & Test codecov License Code style: black

DynTrack

Python package for the study of particle dynamics from 2D tracks

Installation

pip install -U dyntrack

Usage

import dyntrack as dt

DT = dt.ut.load_data("tracks.csv","Position X","Position Y","Parent","Time","background.tiff")

dt.tl.vector_field(DT)
dt.pl.vector_field(DT)

dt.tl.FTLE(DT, 20000,5)
dt.pl.FTLE(DT)

dt.tl.fit_ppt(DT,seed=1)
dt.pl.fit_ppt(DT)

Workflow

Source build and run issues with windows

If missing DLL errors occurs while running, or gcc is not available while building from source please install MinGW-w64:

choco install mingw

Citations and used works

Vector field building

The function dyntrack.tl.vector_field uses vfkm to generate vector fields (see license), please cite the related study if you use it:

Ferreira, N., Klosowski, J. T., Scheidegger, C. & Silva, C.
Vector Field k-Means: Clustering Trajectories by Fitting Multiple Vector Fields.
Comput. Graph. Forum 32, 201–210 (2012).

FTLE scalar field generation

Code from dyntrack.tl.FTLE have been adapted and optimized from Richard Galvez's notebook.

Principal tree fitting with SimplePPT

Code from dyntrack.tl.fit_ppt uses SimplePPT algorithm to fit principal trees on each frames. SimplePPT has been described in the following paper:

Mao et al. (2015), SimplePPT: A simple principal tree algorithm
SIAM International Conference on Data Mining.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dyntrack-1.1.2.tar.gz (39.5 kB view details)

Uploaded Source

Built Distributions

dyntrack-1.1.2-cp38-cp38-win_amd64.whl (100.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

dyntrack-1.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (97.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ x86-64

dyntrack-1.1.2-cp38-cp38-macosx_10_14_x86_64.whl (87.8 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file dyntrack-1.1.2.tar.gz.

File metadata

  • Download URL: dyntrack-1.1.2.tar.gz
  • Upload date:
  • Size: 39.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dyntrack-1.1.2.tar.gz
Algorithm Hash digest
SHA256 b1370705b01c2c9b34dd59d509d5e9a8c634f88444a6d37901ef9d9dd32135a3
MD5 e692035c7c5e3570f73e309c56151b74
BLAKE2b-256 1203eb00db37c248c7eba5cb499affe7b575b2ca029dbfe37fa144bb686e5c64

See more details on using hashes here.

File details

Details for the file dyntrack-1.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: dyntrack-1.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 100.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dyntrack-1.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 14ce22784e8e33c27ef0ede94b5b323d3e540a786fcd485a5b9917b0836cfec6
MD5 224e47e8b2113be097af056ee8fd80e8
BLAKE2b-256 8e0c25ac76246114e17b4830b3088c37e07e4c254832aa0c88ddc01c3c74ca2d

See more details on using hashes here.

File details

Details for the file dyntrack-1.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for dyntrack-1.1.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b33780de5ee7459ad22be87cbe376cf0f638e0dc8380ccca784a8fd177744128
MD5 e601ade5ba1e887445ec18f5b0f69094
BLAKE2b-256 b19bc4bf402f69707c0d8b574ac380c25b9ecdbaaf463305bf999dabae6764b0

See more details on using hashes here.

File details

Details for the file dyntrack-1.1.2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: dyntrack-1.1.2-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 87.8 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for dyntrack-1.1.2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 667cdc958ea746053acd8cfe88f3b744e5191125211650fedad0e25ba3d5b8eb
MD5 0dac27304ed79613449cf45039aec456
BLAKE2b-256 e090b4d0d45114dd7143025cb2ff7b5a888cdefccd832e812062bc4067b55133

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page