Skip to main content

Intel extension for peft with PyTorch and DENAS

Project description

Deltatuner

Deltatuner is an extension for Peft to improve LLM fine-tuning speed through multiple optimizations, including: leverage the compact model constructor DE-NAS to construct/modify the compact delta layers in a hardware-aware and train-free approach, and adding more new deltatuning algorithms.

Introduction

Key Components

  • Supported parameter efficient finetuning algorithms
    • LoRA algorithm
    • Scaling and Shifting(SSF) algorithm: Scale and Shift the deep features in a pre-trained model with much less parameters to catch up with the performance of full finetuning
    • WIP on adding more algos (AdaLora etc.)
  • De-Nas: Automatically construct compact and optimal delta layers with train-free and hardware-aware mode (more details here)
    • step1: Generate search space for delta layers
    • step2: Search algorithm populates delta layers for LM
    • step3: Train-free score evaluates LM with adaptive delta layers

Features

  • Easy-to-use: provide package install, just need to inject few codes into the original code
  • Auto-tuning: automatically select best algorithms and delta structure for finetuning model

Values

  • Saving computation power: reduce the computation power and time required to fine-tune a model by reducing parameter size as well as memory footprint.
  • Improve accuracy: ensure same or no accuracy regression.

Get Started

Installation

  • install the python package
pip install e2eAIOK-deltatuner

Fast Fine-tuning on Base models

Below is an example of optimizing MPT model by adding the following few-lines to use the delatuner optimizations. It use the DE-NAS in delatuner to optimize a LLM with LoRA layers to a LLM with compact LoRA layers, so as to efficiently improve the LLM fine-tuning process in peak memory reduction and time speedup.

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, get_peft_model
+ from deltatuner import deltatuner, deltatuner_args
+ from delta import deltatuner, deltatuner_args

# import model from huggingface
model_id =  "mosaicml/mpt-7b"
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# adding the lora componenents with peft
config = LoraConfig()
lora_model = get_peft_model(model, config) 
# delatuner optimize the model with best lora layer configuration
+ deltatuning_args = deltatuner_args.DeltaTunerArguments()
+ deltatuner_model = deltatuner.optimize(model=lora_model, tokenizer=tokenizer, deltatuning_args=deltatuning_args)
...

API reference

In above examples, deltatuner.optimize is a python function to using deltatuner supported optimization algorithms to optimize the model.

def optimize(model, tokenizer, algo: str="auto", deltatuning_args: DeltaTunerArguments=None, **kwargs) -> DeltaTunerModel:
    '''
    Parameters:
        - model - a PreTrainedModel or LoraModel. Specifies what model should be optimized
        - tokenizer - a tokenizer for preprocess text
        - deltatuning_args (optional) – the deltatuner configuration. 
          - deltatuning_args.denas is to use the denas in the optimization (default: True)
          - deltatuning_args.algo Specifies what type of adapter algorithm (default: auto)
            - "auto" – If the input model is mpt, the algorithm is ssf; elif the algorithm is lora
            - "lora" – use the lora algotihm
            - "ssf" – use the ssf algotithm 
          - deltatuning_args.best_model_structure Specifies the pre-searched delta best structure so the model can be directly initilized without searching.
        - kwargs - used to initilize deltatuning_args through key=value, such as algo="lora"
    Return 
        DeltaTunerModel - a wrapper of model, which composed of the original properties/function together with adavance properties/function provided by deltatuner
    '''

Detailed examples

Please refer to example page for more use cases on fine-tuning other LLMs with the help of DeltaTuner.

Model supported matrix

We have upload the searched delta best structure to the conf dir, so that users can directly use our searched structure for directly fine-tuning by passing the DeltaTunerArguments.best_model_structure to the deltatuner.optimize function.

Causal Language Modeling

Model LoRA SSF
GPT-2
GPT-J
Bloom
OPT
GPT-Neo
Falcon
LLaMA
MPT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

e2eAIOK-deltatuner-1.1.10.tar.gz (26.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page