Skip to main content

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Project description

https://badge.fury.io/py/eagerpy.svg https://codecov.io/gh/jonasrauber/eagerpy/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg

EagerPy

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Warning: this is work in progress; the tests should run through just fine, but lot’s of features are still missing. Let me know if this project is useful to you and which features are needed.

EagerPy is now in active use to develop Foolbox Native.

Installation

pip install eagerpy

Example

import eagerpy as ep

import torch
x = torch.tensor([1., 2., 3.])
x = ep.PyTorchTensor(x)

import tensorflow as tf
x = tf.constant([1., 2., 3.])
x = ep.TensorFlowTensor(x)

import jax.numpy as np
x = np.array([1., 2., 3.])
x = ep.JAXTensor(x)

import numpy as np
x = np.array([1., 2., 3.])
x = ep.NumPyTensor(x)

# In all cases, the resulting EagerPy tensor provides the same
# interface. This makes it possible to write code that works natively
# independent of the underlying framework.

# EagerPy tensors provide a lot of functionality through methods, e.g.
x.sum()
x.sqrt()
x.clip(0, 1)

# but EagerPy also provides them as functions, e.g.
ep.sum(x)
ep.sqrt(x)
ep.clip(x, 0, 1)
ep.uniform(x, (3, 3), low=-1., high=1.)  # x is needed to infer the framework

Compatibility

We currently test with the following versions:

  • PyTorch 1.3.1

  • TensorFlow 2.0.0

  • JAX 0.1.57

  • NumPy 1.18.1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eagerpy-0.13.0.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

eagerpy-0.13.0-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file eagerpy-0.13.0.tar.gz.

File metadata

  • Download URL: eagerpy-0.13.0.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for eagerpy-0.13.0.tar.gz
Algorithm Hash digest
SHA256 cd663669fbd5258e5d3c2300a356e6c442cd12d7557233e2e8daf2ff42abdc31
MD5 c45a3f6d3e9f3b841a8929dbdd222df9
BLAKE2b-256 dc57f8b569ee03869d0b68b6bb326e77d4c84a96f6b59a6cbca88fba772963d2

See more details on using hashes here.

File details

Details for the file eagerpy-0.13.0-py3-none-any.whl.

File metadata

  • Download URL: eagerpy-0.13.0-py3-none-any.whl
  • Upload date:
  • Size: 16.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for eagerpy-0.13.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a63bcc96d33c6750011fba70d263ac487997e77f3141bceaf56d3f593cd9c577
MD5 0b2236268b4fe53f6b1bceeabaaabd2c
BLAKE2b-256 2dc639116700f5bb2f0988bd43fc820a613feea8911a022602b1287fa0c47587

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page