Skip to main content

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Project description

https://badge.fury.io/py/eagerpy.svg https://codecov.io/gh/jonasrauber/eagerpy/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg

EagerPy

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Warning: this is work in progress; the tests should run through just fine, but lot’s of features are still missing. Let me know if this project is useful to you and which features are needed.

EagerPy is now in active use to develop Foolbox Native.

Installation

pip install eagerpy

Example

import eagerpy as ep

import torch
x = torch.tensor([1., 2., 3.])
x = ep.PyTorchTensor(x)

import tensorflow as tf
x = tf.constant([1., 2., 3.])
x = ep.TensorFlowTensor(x)

import jax.numpy as np
x = np.array([1., 2., 3.])
x = ep.JAXTensor(x)

import numpy as np
x = np.array([1., 2., 3.])
x = ep.NumPyTensor(x)

# In all cases, the resulting EagerPy tensor provides the same
# interface. This makes it possible to write code that works natively
# independent of the underlying framework.

# EagerPy tensors provide a lot of functionality through methods, e.g.
x.sum()
x.sqrt()
x.clip(0, 1)

# but EagerPy also provides them as functions, e.g.
ep.sum(x)
ep.sqrt(x)
ep.clip(x, 0, 1)
ep.uniform(x, (3, 3), low=-1., high=1.)  # x is needed to infer the framework

Compatibility

We currently test with the following versions:

  • PyTorch 1.3.1

  • TensorFlow 2.0.0

  • JAX 0.1.57

  • NumPy 1.18.1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eagerpy-0.15.0.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

eagerpy-0.15.0-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file eagerpy-0.15.0.tar.gz.

File metadata

  • Download URL: eagerpy-0.15.0.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for eagerpy-0.15.0.tar.gz
Algorithm Hash digest
SHA256 8e6d16067f9f67206e14e6625ebfe1c8bc305353510eb221f19f4954c5768272
MD5 e8615933cad9874a46a09f374f7a7307
BLAKE2b-256 c94549722eb9c506cd2f65cfa7af409fbe78389051d3a16e8b25205cb73449cf

See more details on using hashes here.

File details

Details for the file eagerpy-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: eagerpy-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.6.10

File hashes

Hashes for eagerpy-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 43302ac1b675820709a78270fabffc2a8d9261f2d8e35074d092f55709971820
MD5 33948af6cde59949b6f5a86571641170
BLAKE2b-256 5a8557faa2648f0e2d5e5b8c51d2cfa61f2f4122212a6e2d6913b3d393db0152

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page