Skip to main content

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Project description

https://badge.fury.io/py/eagerpy.svg https://codecov.io/gh/jonasrauber/eagerpy/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg

EagerPy

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Learn more about in the documentation.

EagerPy is now in active use to develop Foolbox Native.

Installation

pip install eagerpy

Example

import eagerpy as ep

import torch
x = torch.tensor([1., 2., 3.])
x = ep.PyTorchTensor(x)

import tensorflow as tf
x = tf.constant([1., 2., 3.])
x = ep.TensorFlowTensor(x)

import jax.numpy as np
x = np.array([1., 2., 3.])
x = ep.JAXTensor(x)

import numpy as np
x = np.array([1., 2., 3.])
x = ep.NumPyTensor(x)

# In all cases, the resulting EagerPy tensor provides the same
# interface. This makes it possible to write code that works natively
# independent of the underlying framework.

# EagerPy tensors provide a lot of functionality through methods, e.g.
x.sum()
x.sqrt()
x.clip(0, 1)

# but EagerPy also provides them as functions, e.g.
ep.sum(x)
ep.sqrt(x)
ep.clip(x, 0, 1)
ep.uniform(x, (3, 3), low=-1., high=1.)  # x is needed to infer the framework

Compatibility

We currently test with the following versions:

  • PyTorch 1.3.1

  • TensorFlow 2.0.0

  • JAX 0.1.57

  • NumPy 1.18.1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eagerpy-0.18.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

eagerpy-0.18.0-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file eagerpy-0.18.0.tar.gz.

File metadata

  • Download URL: eagerpy-0.18.0.tar.gz
  • Upload date:
  • Size: 15.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for eagerpy-0.18.0.tar.gz
Algorithm Hash digest
SHA256 fc5b97f70c1b6ce72d377d3773efeba413c0e1ce5bc454a94ba25986f2573a38
MD5 237927b209c6048b4b1d994d4caca6aa
BLAKE2b-256 37822699a7a862234d3d4fe6d173c7195d68e2974cc966807ee11212d2960bc2

See more details on using hashes here.

File details

Details for the file eagerpy-0.18.0-py3-none-any.whl.

File metadata

  • Download URL: eagerpy-0.18.0-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for eagerpy-0.18.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7172d2226df07177b6bb583eee158d8f198a33f74494298b102d46d1017d77b3
MD5 4bffc5b95c3e904df1857ac1bf92e771
BLAKE2b-256 8a8e58e0f229ac312ea73509b1aa3b65ebdd8d0dd09d5f971822309acc54f9fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page