Skip to main content

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Project description

https://badge.fury.io/py/eagerpy.svg https://codecov.io/gh/jonasrauber/eagerpy/branch/master/graph/badge.svg https://img.shields.io/badge/code%20style-black-000000.svg

EagerPy

EagerPy is a thin wrapper around PyTorch, TensorFlow Eager, JAX and NumPy that unifies their interface and thus allows writing code that works natively across all of them.

Learn more about in the documentation.

EagerPy is now in active use to develop Foolbox Native.

Installation

pip install eagerpy

Example

import eagerpy as ep

import torch
x = torch.tensor([1., 2., 3.])
x = ep.PyTorchTensor(x)

import tensorflow as tf
x = tf.constant([1., 2., 3.])
x = ep.TensorFlowTensor(x)

import jax.numpy as np
x = np.array([1., 2., 3.])
x = ep.JAXTensor(x)

import numpy as np
x = np.array([1., 2., 3.])
x = ep.NumPyTensor(x)

# In all cases, the resulting EagerPy tensor provides the same
# interface. This makes it possible to write code that works natively
# independent of the underlying framework.

# EagerPy tensors provide a lot of functionality through methods, e.g.
x.sum()
x.sqrt()
x.clip(0, 1)

# but EagerPy also provides them as functions, e.g.
ep.sum(x)
ep.sqrt(x)
ep.clip(x, 0, 1)
ep.uniform(x, (3, 3), low=-1., high=1.)  # x is needed to infer the framework

Compatibility

We currently test with the following versions:

  • PyTorch 1.3.1

  • TensorFlow 2.0.0

  • JAX 0.1.57

  • NumPy 1.18.1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eagerpy-0.23.0.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

eagerpy-0.23.0-py3-none-any.whl (27.6 kB view details)

Uploaded Python 3

File details

Details for the file eagerpy-0.23.0.tar.gz.

File metadata

  • Download URL: eagerpy-0.23.0.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for eagerpy-0.23.0.tar.gz
Algorithm Hash digest
SHA256 d7e76de550594173179664a4a25adc3e2aa4984485e399864c616b308663a5c5
MD5 5cf94bcd690f84698ffdd99700c02bbc
BLAKE2b-256 7c56484ff28eb0f3ba79a8869f263ca9b06b89b93f62ec6dcb033ed878dbb5b5

See more details on using hashes here.

File details

Details for the file eagerpy-0.23.0-py3-none-any.whl.

File metadata

  • Download URL: eagerpy-0.23.0-py3-none-any.whl
  • Upload date:
  • Size: 27.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.10

File hashes

Hashes for eagerpy-0.23.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e3617478e05a3d2657f9a25c99b2bd0dce3410a352f8422cd5b3d604a12410ce
MD5 b716fd0a427b855c0d806ef6dbe54764
BLAKE2b-256 45983d677569abe178ce017947856c7433e2eed44e7958da349d424fcb29fee6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page