Skip to main content

Python tool to extract large-amounts of OpenStreetMap data

Project description

earth-osm

by

PyPI version Conda version codecov CI License: MIT Discord

earth-osm is a free software tool that can extract large-amounts of OpenStreetMap data. It implements filters and multi-processing for fast and memory-efficient computations. You can extract e.g. power lines for Africa on your laptop. It builds on esy-osmfilter and improves its package design, usability and performance.

Getting Started

Install earth-osm with pip:

pip install earth-osm

Or with conda:

conda install --channel=conda-forge earth-osm

Extract osm data

# Example CLI command
earth_osm extract power --regions benin monaco  --features substation line

This will extract primary feature = power for the regions = benin and monaco and the secondary features = substation and line. By default the resulting .csv and .geojson are stored in ./earth_data/out

Load the substation data for benin using pandas

# For Pandas
df_substations = pd.read_csv('./earth_data/out/BJ_raw_substations.csv')
# For GeoPandas
gdf_substations = gpd.read_file('./earth_data/out/BJ_raw_substations.geojson')

Other Arguments

usage: earth_osm extract primary --regions region1, region2 --features feature1, feature2 --data_dir DATA_DIR [--update] [--mp]

primary (e.g power, water, road, etc) NOTE: currently only power is supported

--regions region1 region2 ... (use either iso3166-1:alpha2 or iso3166-2 codes or full names as given by running 'earth_osm view regions')

--features feature1 feature2 ... (optional, use sub-features of primary feature, e.g. substation, line, etc)

--update (optional, update existing data, default False)

--mp (optional, use multiprocessing, default True)

--data_dir (optional, path to data directory, default './earth_data')

--out_format (optional, export format options csv or geojson, default csv)

--out_aggregate (options, combine outputs per feature, default False)

Advanced Usage

import earth_osm as eo

eo.get_osm_data(
  primary_name = 'power',
  region_list = ['benin', 'monaco'],
  feature_list = ['substation', 'line'],
  update = False,
  mp = True,
  data_dir = './earth_data',
  out_format = ['csv', 'geojson'],
  out_aggregate = False,
)

Development

(Optional) Intstall a specific version of earth_osm

pip install git+https://github.com/pypsa-meets-earth/earth-osm.git@<required-commit-hash>

(Optional) Create a virtual environment for python>=3.10

python3 -m venv .venv
source .venv/bin/activate

Read the CONTRIBUTING.md file.

pip install git+https://github.com/pypsa-meets-earth/earth-osm.git
pip install -r requirements-test.txt 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

earth_osm-0.1.0.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

earth_osm-0.1.0-py3-none-any.whl (23.0 kB view details)

Uploaded Python 3

File details

Details for the file earth_osm-0.1.0.tar.gz.

File metadata

  • Download URL: earth_osm-0.1.0.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for earth_osm-0.1.0.tar.gz
Algorithm Hash digest
SHA256 f0ed34663298026ccfc9c891c6181b6a11afa6ada44513909220fd7b0ce141ca
MD5 b168f30d644934a4bbaa1eccd90466d5
BLAKE2b-256 2e7c49371256fd238ac688596d2401c6555aed02133c2b2c10abb24c754155f4

See more details on using hashes here.

File details

Details for the file earth_osm-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: earth_osm-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 23.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for earth_osm-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 06ae90478cc8099791cae9497ad8801d1990ec00db4a114a270ce0f97861232d
MD5 dc0a602c177c8e3b4c93fc36e7fe3d8e
BLAKE2b-256 acceee146783a7737d45779cb9ccc01b5d39ca7de3438ec6902bc3e3591259e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page