This library contains code for interacting with EASIER.AI platform.
Project description
Quickstart with EasierSDK
This first tutorial will cover some basic functionalities about interacting with EASIER in oder to "start playing" with the available Models and Datasets in the platform, with these key topics:
- How to connect the platform
- Search for Models and Datasets
- Get information from Models and Datastes
- Download and play with an image classifier Model
- Create and upload your first Model
An advanced tutorial is also available in README_Advanced.md covering things such as:
- Model versioning
- Model serving in the platform
- Model training in the platform
Getting the library and connecting to the platform
So, lets start downloading the library and login with your EASIER's user. EasierSDK library allows you to interact, donwload, execute these Models and Datasets.
%pip install -U easierSDK
from easierSDK.easier import EasierSDK
from easierSDK.classes.categories import Categories
import easierSDK.classes.constants as Constants
#- Initializations
easier_user = ""
easier_password = ""
easier = EasierSDK(easier_user=easier_user, easier_password=easier_password)
Taking a look to the available Models and Datasets
The first thing you can do is to take a look into the Easier catalogue composed by Models and Datasets. These are organized in different available repositories. Some of them are provided (public) by other users of the platform and also, you will find others officially provided by the Easier provider. Getting the information would take a little bit of time depending on the size of the Repository.
repositories = easier.get_repositories_metadata(category=None) # Returns dict of Repo objects
Getting repositories information...: 100%|[31m██████████[0m| 5/5 [00:03<00:00, 1.29it/s, repository=juan.carrasco-public]
for repo_name in repositories.keys():
print(repo_name)
adrian.arroyo-private
adrian.arroyo-public
easier-public
jose.gato-public
juan.carrasco-public
We can see the public/private repository of our user, but also, other available ones. Lets dig into the one from "easier-public". In order to do this, you can use the dictionary-like python syntax. There are some built-in functions that print the content of the repository for you.
repositories["easier-public"].print_models()
print("-----------------------------------------------------------------------------------------------------------------------")
repositories["easier-public"].print_datasets()
MODELS:
Name Category Last Modification Num Experiments
seriot_anomaly_detection Categories.MISC 11:50:00 - 10/12/2015 0
dummy_weather Categories.MISC 11:50:00 - 01/02/2021 17
resnet50_v2 Categories.MISC 11:50:00 - 10/12/2015 2
-----------------------------------------------------------------------------------------------------------------------
DATASETS:
Name Category Last Modification
kaggle-pokemon-data Categories.MISC 2021/01/18 12:41:59
kaggle_flowers_recognition Categories.MISC 2021/01/14 14:26:24
robot_sim_decenter_4 Categories.MISC 2020-12-12 12:00:00
This repository contains a set of Models and Datasets, and you can see these are organized by categories. So you can use these categories to refine your search finding out your desired Model or Dataset.
repositories["easier-public"].print_categories()
print("-----------------------------------------------------------------------------------------------------------------------")
repositories["easier-public"].categories["misc"].pretty_print()
Category Num Models Num Datasets
health 0 0
transport 0 0
security 0 0
airspace 0 0
education 0 0
misc 3 3
-----------------------------------------------------------------------------------------------------------------------
MODELS:
Name Category Last Modification Num Experiments
seriot_anomaly_detection Categories.MISC 11:50:00 - 10/12/2015 0
dummy_weather Categories.MISC 11:50:00 - 01/02/2021 17
resnet50_v2 Categories.MISC 11:50:00 - 10/12/2015 2
DATASETS:
Name Category Last Modification
kaggle-pokemon-data Categories.MISC 2021/01/18 12:41:59
kaggle_flowers_recognition Categories.MISC 2021/01/14 14:26:24
robot_sim_decenter_4 Categories.MISC 2020-12-12 12:00:00
Or you can print Models and Datasets separatly per category.
repositories["easier-public"].categories["misc"].print_models()
print("-----------------------------------------------------------------------------------------------------------------------")
repositories["easier-public"].categories["misc"].print_datasets()
MODELS:
Name Category Last Modification Num Experiments
seriot_anomaly_detection Categories.MISC 11:50:00 - 10/12/2015 0
dummy_weather Categories.MISC 11:50:00 - 01/02/2021 17
resnet50_v2 Categories.MISC 11:50:00 - 10/12/2015 2
-----------------------------------------------------------------------------------------------------------------------
DATASETS:
Name Category Last Modification
kaggle-pokemon-data Categories.MISC 2021/01/18 12:41:59
kaggle_flowers_recognition Categories.MISC 2021/01/14 14:26:24
robot_sim_decenter_4 Categories.MISC 2020-12-12 12:00:00
You can go more in details with each dataset or model using the same syntax.
repositories["easier-public"].categories['misc'].datasets["robot_sim_decenter_4"].pretty_print()
Category: misc
Name: robot_sim_decenter_4
Size: 100
Description: DECENTER UC2 simulation images of person and robot
Last modified: 2020-12-12 12:00:00
Version: 0
Row number: 0
Features: {}
Dataset type: images
File extension: jpeg
repositories["easier-public"].categories['misc'].models["resnet50_v2"].pretty_print()
Category: misc
Name: resnet50_v2
Description: Pre-trained Keras model, processing functions in: 'tensorflow.keras.applications.resnet50'. Some .jpg are stored as examples.
Last modified: 11:50:00 - 10/12/2015
Version: 0
Features: N/A
Great, this one seems pretty interesting, resnet50 models are used to clasify images. Thanks to the respository owner for providing us with such an interesting model. Actualy, it has been already trained, so, it should work out of the box. We could use it to clasify our images.
Playing with an existing Model
In our previous search for a cool model, we found a resnet50 trained one. Now we will download it to start clasifying images.
We will use the method get_model from the Models API to load the model into an object of type EasierModel.
# Returns an object of type EasierModel
easier_resnet_model = easier.models.get_model(repo_name=repositories["easier-public"].name,
category= Categories.MISC,
model_name=repositories["easier-public"].categories['misc'].models["resnet50_v2"].name,
experimentID=0)
Downloading model resnet50_v2...: 100%|[31m██████████[0m| 3/3 [00:02<00:00, 1.12it/s, file=models/misc/resnet50_v2/0/resnet50_v2.tflite]
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Each model is available in multiple Experiments (or versions). This time we will take the first one (experimentID=0). By default, if you do not provide the experimentID, it takes the most recent version. Others versions would work better (or not), would use different algorithms, features, etc. This is up to the provider and it could give your more details with metadata info. For example, for the experimentID=1:
# Returns an object of type ModelMetadata
model_metadata = easier.models.show_model_info(repo_name="easier-public",
category=Categories.MISC,
model_name="resnet50_v2",
experimentID=1)
Category: misc
Name: resnet50_v2
Description: resnet50v2 re-trained for simulated images by PCs
Last modified: 11:50:00 - 10/12/2020
Version: 1
Features: N/A
previous_experimentID: 0
In order to play with the original resnet50 model, we will need to use some libraries. In this case we will use the framework Keras. This will require a minimum knowledge about using this framework for preprocessing the images for the model, but not too deep.
import PIL
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.applications.imagenet_utils import decode_predictions
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.applications import resnet50
import matplotlib.pyplot as plt
Well, as an image classifier Model, we will need some images.
Lets download and prepare the image accordingly to the Model's input. Basically, transform the image into an array. The EasierSDK provides you with a method to turn an image into an array.
!wget https://upload.wikimedia.org/wikipedia/commons/a/ac/NewTux.png
--2021-05-28 12:27:35-- https://upload.wikimedia.org/wikipedia/commons/a/ac/NewTux.png
Resolving upload.wikimedia.org (upload.wikimedia.org)... 91.198.174.208, 2620:0:862:ed1a::2:b
Connecting to upload.wikimedia.org (upload.wikimedia.org)|91.198.174.208|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 120545 (118K) [image/png]
Saving to: ‘NewTux.png’
NewTux.png 100%[===================>] 117.72K --.-KB/s in 0.01s
2021-05-28 12:27:35 (8.99 MB/s) - ‘NewTux.png’ saved [120545/120545]
filename = './NewTux.png'
original = load_img(filename, target_size = (224, 224))
plt.imshow(original)
plt.show()
# Transform image into an array to use as input for models
image_batch= easier.datasets.codify_image(filename, target_size = (224, 224))
So ths is a nice Tux, let see what our classifier says about it, easily with:
processed_image = resnet50.preprocess_input(image_batch.copy())
predictions = easier_resnet_model.get_model().predict(processed_image)
# convert the probabilities to class labels
label = decode_predictions(predictions)
print(label)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json
40960/35363 [==================================] - 0s 0us/step
[[('n04286575', 'spotlight', 0.24322341), ('n04557648', 'water_bottle', 0.083833046), ('n04380533', 'table_lamp', 0.058811646), ('n04328186', 'stopwatch', 0.048403583), ('n03793489', 'mouse', 0.03951452)]]
It seems the model is not very sure about what this image is about ;). As you can see, accessing the model is very easy with the get_model() method of the object.
Now we will try again with other images. But this time, instead of dowloading from internet, we will use an available dataset in EASIER (containing images). We have previously seen one about flowers inside the EASIER Repository:
repositories["easier-public"].categories['misc'].datasets["kaggle_flowers_recognition"].pretty_print()
Category: misc
Name: kaggle_flowers_recognition
Size: 228.29
Description: Kaggle Flowers Recognition Dataset from: https://www.kaggle.com/alxmamaev/flowers-recognition
Last modified: 2021/01/14 14:26:24
Version: 0
Row number: 0
Features: []
Dataset type: images
File extension: zip
EasierSDK provides a method to donwload a selected DataSet locally.
success = easier.datasets.download(repo_name="easier-public",
category=Categories.MISC,
dataset_name="kaggle_flowers_recognition",
path_to_download="./")
Downloading kaggle_flowers_recognition...: 50%|[31m█████ [0m| 1/2 [00:09<00:09, 9.40s/it, file=datasets/misc/kaggle_flowers_recognition/metadata.json]
Let's unzip the content of the dataset.
!unzip -q ./datasets/misc/kaggle_flowers_recognition/flowers_kaggle_dataset.zip -d datasets/misc/kaggle_flowers_recognition/
Now, let's plot an image of this dataset.
filename = './datasets/misc/kaggle_flowers_recognition/flowers/sunflower/1022552002_2b93faf9e7_n.jpg'
image_batch = easier.datasets.codify_image(filename)
original = load_img(filename, target_size = (224, 224))
plt.imshow(original)
plt.show()
Downloading kaggle_flowers_recognition...: 100%|[31m██████████[0m| 2/2 [00:28<00:00, 14.41s/it, file=datasets/misc/kaggle_flowers_recognition/metadata.json]
This image is ok and shows a nice flower. Could the classifier detect it correctly?
processed_image = resnet50.preprocess_input(image_batch.copy())
predictions = easier_resnet_model.get_model().predict(processed_image)
# convert the probabilities to class labels
label = decode_predictions(predictions)
print(label)
[[('n11939491', 'daisy', 0.9527277), ('n04522168', 'vase', 0.016297266), ('n11879895', 'rapeseed', 0.008985951), ('n02190166', 'fly', 0.0033212467), ('n02206856', 'bee', 0.002354509)]]
Great job, it detects it is a flower. Actually, it detects it is a daisy flower. With a probability of 95%.
In summary, in this tutorial we have learnt how to play with the different models, make predictions and download existing datasets.
Create your very first simple Model
This is a very simple example to create an Model in EASIER. The model will not be trained but, instead, we will focus on how to interact with EASIER in order to save your model.
Let's first use Tensorflow to create and compile a simple sequential model for binary classification:
import tensorflow as tf
# - Create model from scratch
my_tf_model = tf.keras.models.Sequential([
tf.keras.layers.Dense(128, activation='relu', input_shape=(224,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.1),
tf.keras.layers.Dense(1, activation="sigmoid")
])
my_tf_model.compile(optimizer='adam',
loss=tf.keras.losses.categorical_crossentropy,
metrics=[tf.keras.metrics.mean_squared_error])
my_tf_model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 128) 28800
_________________________________________________________________
dropout (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 64) 8256
_________________________________________________________________
dropout_1 (Dropout) (None, 64) 0
_________________________________________________________________
dense_2 (Dense) (None, 1) 65
=================================================================
Total params: 37,121
Trainable params: 37,121
Non-trainable params: 0
_________________________________________________________________
Now that we have our tensorflow model, let's create an EasierModel object that will be the placeholder for it, as long as some other model-related objects like the scaler or the label encoder.
from easierSDK.classes.easier_model import EasierModel
# Create Easier Model
my_easier_model = EasierModel()
# Set the tensorflow model
my_easier_model.set_model(my_tf_model)
Now that we have our model in our EASIER placeholder, we need to create some metadata for it, before being allowed to upload the model to the platform.
You can use the ModelMetadata class for that:
from easierSDK.classes.model_metadata import ModelMetadata
from datetime import datetime
# # - Create ModelMetadata
mymodel_metadata = ModelMetadata()
mymodel_metadata.category = Categories.HEALTH
mymodel_metadata.name = 'my-simple-classifier'
mymodel_metadata.last_modified = datetime.now().strftime("%Y/%m/%d %H:%M:%S")
mymodel_metadata.description = 'My Simple Clasifier'
mymodel_metadata.version = 0
mymodel_metadata.features = []
my_easier_model.set_metadata(mymodel_metadata)
Now that our model has some metadata information, let's upload it to our private repository. We can download later on this model to continue working with it.
success = easier.models.upload(easier_model=my_easier_model)
Uploading my-simple-classifier...: 100%|[32m██████████[0m| 4/4 [00:00<00:00, 32.26it/s, file=my-simple-classifier.w.h5]
Uploaded model:
Category: health
Name: my-simple-classifier
Description: My Simple Clasifier
Last modified: 2021/05/28 12:30:30
Version: 1
Features: []
previous_experimentID: 0
Create a new Dataset
You can create an EASIER Dataset from any kind of data: images, csv, files, whatever. Here as an example, we will use the Columbia University Image Library
!wget http://www.cs.columbia.edu/CAVE/databases/SLAM_coil-20_coil-100/coil-100/coil-100.tar.gz
!mkdir -p ./datasets/misc/coil-100-objects/
!tar -xf ./coil-100.tar.gz -C ./datasets/misc/coil-100-objects/
--2021-05-28 12:30:37-- http://www.cs.columbia.edu/CAVE/databases/SLAM_coil-20_coil-100/coil-100/coil-100.tar.gz
Resolving www.cs.columbia.edu (www.cs.columbia.edu)... 128.59.11.206
Connecting to www.cs.columbia.edu (www.cs.columbia.edu)|128.59.11.206|:80... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://www.cs.columbia.edu/CAVE/databases/SLAM_coil-20_coil-100/coil-100/coil-100.tar.gz [following]
--2021-05-28 12:30:37-- https://www.cs.columbia.edu/CAVE/databases/SLAM_coil-20_coil-100/coil-100/coil-100.tar.gz
Connecting to www.cs.columbia.edu (www.cs.columbia.edu)|128.59.11.206|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 261973331 (250M) [application/x-gzip]
Saving to: ‘coil-100.tar.gz’
coil-100.tar.gz 100%[===================>] 249.84M 32.1MB/s in 8.4s
2021-05-28 12:30:46 (29.9 MB/s) - ‘coil-100.tar.gz’ saved [261973331/261973331]
Now, like the previous example, we will use the Datasets API to create a new EasierDataset. First, let's fill the proper Metadata and, then, we can upload it to our repository.
from datetime import datetime
from easierSDK.classes.dataset_metadata import DatasetMetadata
metadata = DatasetMetadata()
metadata.category = Categories.MISC
metadata.name = 'coil-100'
metadata.last_modified = datetime.now().strftime("%Y/%m/%d %H:%M:%S")
metadata.description = "Columbia University Image Library - Objects in ppm format"
metadata.size = 125
metadata.dataset_type = "images"
metadata.file_extension = ".tar.gz"
With your Dataset downloaded and the DatasetMetadata completed, you can invoke the method upload. This method will take a directory as parameter and make a compressed file with all the content inside it. When uploading the data, it will also attach the filled metadata. We will make it available in our public repository under Misc category.
easier.datasets.upload(category=metadata.category,
dataset_name=metadata.name,
local_path="./datasets/misc/coil-100-objects",
metadata=metadata,
public=True)
Uploading coil-100...: 100%|[32m██████████[0m| 2/2 [00:11<00:00, 5.94s/it, file=metadata.json]
Finished uploading dataset with no errors.
True
FInally, we will take a last look to our repository to check if our Dataset is available. The easier object contains information about the name of your public and private repo. You can use it as index to search for the Dataset we have just upload with your user. First, It is needed to refresh our repositories variable
repositories = easier.get_repositories_metadata(category=None) # Returns dict of Repo objects
repositories[easier.my_public_repo].print_datasets()
Getting repositories information...: 100%|[31m██████████[0m| 5/5 [00:04<00:00, 1.10it/s, repository=juan.carrasco-public]
DATASETS:
Name Category Last Modification
coil-100 Categories.MISC 2021/05/28 12:31:06
repositories[easier.my_public_repo].categories['misc'].datasets["coil-100"].pretty_print()
Category: misc
Name: coil-100
Size: 125
Description: Columbia University Image Library - Objects in ppm format
Last modified: 2021/05/28 12:31:06
Version: 0
Row number: 0
Features: {}
Dataset type: images
File extension: .tar.gz
Dataset analysis and visualization
EasierSDK has integrated the Sweetviz python library. According to its doc: "Sweetviz is an open-source Python library that generates beautiful, high-density visualizations to kickstart EDA (Exploratory Data Analysis) with just two lines of code. Output is a fully self-contained HTML application." We recommend reading this article to get an in-depth description of all the features that the resulting report (the HTML application) can do.
In order to do this initial analysis, you may use the function analyze
within the datasetsAPI
just as this example. It has similar parameters as the original analyze
function in Sweetviz, but also does the show call automatically. Use parameters window
and html
to show the generated report in a window or as an html webpage, respectively.
easier.datasets.download(repo_name="easier-public", category=Categories.MISC, dataset_name="kaggle-pokemon-data", path_to_download="./")
!tar -xvf ./datasets/misc/kaggle-pokemon-data/kaggle-pokemon-data.tar.gz -C ./datasets/misc/kaggle-pokemon-data/
pokemon_df = easier.datasets.load_csv(local_path="./datasets/misc/kaggle-pokemon-data/pokemon/Pokemon.csv", separator=',')
pokemon_df = pokemon_df.drop(columns=["#", "Name"])
pokemon_df = pokemon_df.dropna()
report = easier.datasets.analyze(pokemon_df, "pokemon_dataset", window=True)
Downloading kaggle-pokemon-data...: 50%|[31m█████ [0m| 1/2 [00:00<00:00, 15.31it/s, file=datasets/misc/kaggle-pokemon-data/metadata.json]
pokemon/
pokemon/pokemon_data/
pokemon/pokemon_data/data.txt
pokemon/Pokemon.csv
Downloading kaggle-pokemon-data...: 100%|[31m██████████[0m| 2/2 [00:00<00:00, 9.11it/s, file=datasets/misc/kaggle-pokemon-data/metadata.json]
As you can see, the function also returns the generated report of type sweetviz.DataframeReport
.
report.show_html()
Report SWEETVIZ_REPORT.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardless, the report IS saved in your notebook/colab files.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file easierSDK-0.1.16.tar.gz
.
File metadata
- Download URL: easierSDK-0.1.16.tar.gz
- Upload date:
- Size: 57.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.7.0 requests/2.25.1 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cbbc1ce8f8f3ddda105a5677f0463654cf98c8fd1531e58dabbcb18b04befe60 |
|
MD5 | dc052fb91abaea1c6ebf78a5a6af4c9c |
|
BLAKE2b-256 | 0b9b46f8a03bffc866e57a07727e4b9a067c28d64c294e9e54a305f71c139f13 |
File details
Details for the file easierSDK-0.1.16-py3-none-any.whl
.
File metadata
- Download URL: easierSDK-0.1.16-py3-none-any.whl
- Upload date:
- Size: 68.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.7.0 requests/2.25.1 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.7.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ee879bdde2d43890e58ddb3b23fc28491eb28a93b61af1c6f80cf0efb02f088 |
|
MD5 | aed382b876e040181c186d27d6822952 |
|
BLAKE2b-256 | 4baf4055526e17c680cae7f3febb9ad2e069c58729806b4539e1fabba446f60a |