Skip to main content

This library contains reusable code for various projects

Project description

Common Python Helper Functions

This library contains reused code for all the EASIER-AI projects written in Python.

Using the library

Install

This library is available through PIP package manager. To install it, execute

pip install easierai-common-functions

Importing

The library needs to be imported in order to use it:

import common_functions.helpers as helpers

from minio import Minio

from common_functions.logger import Logger

Then, there needs to be some configuration:

helpers.config = helpers.read_config_file(config_file_path)

helpers.minioClient = Minio(minio_host + ':' + minio_port, minio_access, minio_secret, secure=False)

helpers._logger = Logger('helpers', 'helpers.py')

If you wish to check the validity of the configuration provided for an inferencer, you can use this method (it will notify at start if there are no valid models):

helpers.check_initial_config(eslib, False)

Where eslib is a valid started instance of the elasticsearch library.

Necessary environmental variables

This library reads from the following environmental variables:

  • LOGSTASH_HOST: IP/hostname hosting the Logstash service to upload the logs
  • LOGSTASH_PORT: port of where the Logstash service is listening

Usage

The library has these functions available:

get_data_shape(data_type, num_features, num_samples, algorithm)

Outputs the data_shape required according to the parameters passed.

importer(algorithm, inference_type=constants.ESTIMATOR, lr=0.001)

Returns a predictor instance according to the parameters passed.

load_model_file(eslib, id, inference_type=constants.ESTIMATOR)

Returns the document stored on Elasticsearch, which includes, among other things, the h5 and pkl files where we had saved the model and the scalers, respectively. :param id: id of the entity :param inference_type: this param helps us to download the right model according to its features and parameters :return: dict with the format {"extension": object, "extension2": object2}

read_config_file(config_path)

Initializes the config variable

check_initial_config(eslib, is_classifier)

Checks if there is any model in the database that matches the configuration provided.

scale_dataset(scaler, data, i, ft_range=(-1, 1), training=True)

Scale data (in np.array or list format) using MinMaxScaler and the ft_range given (default is (-1,1) :param data: array of data to be scaled :param i: feature corresponding to the scaler :param ft_range: tuple containing minimum and maximum values of the data already scaled :return: tuple of scaler and data scaled

compose_model_params(is_classifier)

Composes a json object with the parameters of a trained model to store in the database

compose_model_params_filter(is_classifier)

Composes a json object with the parameters in the config file used to look for the models in the database.

save_model(eslib, id, metadata, dict={}, inference_type=constants.ESTIMATOR, _id=None, save_tflite=False, calibration_data=None)

Saves the model related files after training. Has the ability to save a model as tflite format. The parameter dict should come in the format {"extension1": object1, "extension2": object2 ... }. The calibration_data is only used when saving a model as tflite format, and should be a representation of the dataset.

Additional features

Constants file

The constants used on EASIER-AI services are stored in common_functions/constants.py file. It can be imported as:

import common_functions.constants as constants

Advanced logger

This logger has the same syntax as the default logging python library. It needs to be imported and initialized as:

from common_functions.logger import Logger

logger = Logger(service_name, filename)

It then can be used as logger.info(message), logger.debug(message, additional_info), etc.

This logger, apart from printing to console, uploads each log instance to Elasticsearch via Logstash, through a TCP port. To use this functionality it is needed to define the previously mentioned LOGSTASH_HOST and LOGSTASH_PORT environment variables.

Edge toolkit

This class is in charge of converting a tensorflow or keras model into tensorflow lite. It can be used as:

from edge_tools import Edge_Toolkit

edge_toolkit = Edge_Toolkit(logger)

edge_toolkit.convert_model_lite(calibration_data=calibration_data, keras_model_path=filename + '.' + constants.MODEL_EXTENSION)

After executing these lines, the tflite file will be stored in ../storage/ and can be uploaded to a remote filesystem.

Model definitions

The model definitions used by EASIER are also stored in this library. They are imported by the helpers file using the importer( ... ) function.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easierai_common_functions-1.8.7.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

easierai_common_functions-1.8.7-py3-none-any.whl (18.6 kB view details)

Uploaded Python 3

File details

Details for the file easierai_common_functions-1.8.7.tar.gz.

File metadata

  • Download URL: easierai_common_functions-1.8.7.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for easierai_common_functions-1.8.7.tar.gz
Algorithm Hash digest
SHA256 fa938cc8e26b3d14aa68c04fda862b90c9c1d845ae60ebc394d57a3d74767ef8
MD5 41bc38abbb6f1341a32318c0f75dc253
BLAKE2b-256 23c2d77a0a2e824792f5d623a0c96f5ca49e14c3f171adb4188ecb7a3d0f8722

See more details on using hashes here.

File details

Details for the file easierai_common_functions-1.8.7-py3-none-any.whl.

File metadata

  • Download URL: easierai_common_functions-1.8.7-py3-none-any.whl
  • Upload date:
  • Size: 18.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.6.9

File hashes

Hashes for easierai_common_functions-1.8.7-py3-none-any.whl
Algorithm Hash digest
SHA256 9904fda269c199490af88b9f20caa04b4c18fc2d55e506222b4391fe2d428365
MD5 0288378ac6d78b50df4734e0045be506
BLAKE2b-256 4ba61f04945f7df7386ee5cd0c8634c98b279c428c8ff8bfda3fa4b0bc737ee0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page