Skip to main content

A package that allows you to easily profile your dataframe, check for missing values, outliers, data types.

Project description

Data Frame Profiling - A package that allows to easily profile your dataframe, check for missing values, outliers, data types.

    Import Lib
  • from df_profiling import DF_Profiling
    Profile your Data:
  • DF_Profiling.profiling("my_file.csv")

    Either using Google Colab or Saving it as csv file, use the filter options to easily check for:
  • Data Types
  • Counts
  • Missing Values Count
  • Missing Values Percentage
  • Min Value
  • Quartiles: 1st, 3rd
  • Median
  • Lower Bound Limits
  • Upper Bound Limits
  • Max Value
  • Unique Values
  • Spot Potential Outliers

    Save / Export your Analyses

  • DF_Profiling.profiling("my_file.csv").to_csv("my_profiling.csv")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

easy_df_profiling-0.1.2-py3-none-any.whl (3.0 kB view details)

Uploaded Python 3

File details

Details for the file easy_df_profiling-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for easy_df_profiling-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 445dea801312e9d9e5b1c5d7ffd9a3a3aaf65e3967ea9c710b84ae46ed07ede4
MD5 c044fc8d8652725214b7a5f9d1a6b3e7
BLAKE2b-256 e1d1377b0892149831e04c8126e32ece8a29947fd06595ae962eeb890d952897

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page