This package hopes to provide a modular and highly extendable interface to interact with LLMs via (multiple) function calling, easily.
Project description
Easy FNC (Function Calling) Package
The easy_fnc
package provides a framework for generating responses using AI models and executing user-defined functions. It allows users to define their own functions and integrate them with AI models to create interactive and customizable applications.
Installation
To install the easy_fnc
package, run the following command:
pip install easy_fnc
Usage
Defining User Functions
User-defined functions can be provided to the package in two ways:
-
Function File: Create a Python file (e.g.,
functions.py
) and define your functions there. The package will automatically import the functions from the specified file. -
List of Functions: Pass a list of function objects directly to the
get_user_defined_functions
function.
Example:
from easy_fnc.functions import get_user_defined_functions
# Using a function file
user_functions = get_user_defined_functions("path/to/functions.py")
# Using a list of functions
def func1():
pass
def func2():
pass
user_functions = get_user_defined_functions([func1, func2])
Core Utility Functions
The package provides a set of core utility functions that can be used in conjunction with user-defined functions. These functions are defined in the core_utils.py
file and can be accessed using the get_core_utils
function.
Example:
from easy_fnc.core_utils import get_core_utils
core_utils = get_core_utils()
Models
The package provides an abstract base class EasyFNCModel
in the model.py
file. This class defines the interface for implementing AI models that can generate responses based on user input and execute function calls.
To create a custom model, subclass EasyFNCModel
and implement the required methods:
generate(self, user_input: str) -> dict
: Generate a response based on the user input.get_function_calls(self, user_input: str, verbose: bool = False) -> list[dict]
: Extract function calls from the user input.
Example:
from easy_fnc.models.model import EasyFNCModel
class CustomModel(EasyFNCModel):
def generate(self, user_input: str) -> dict:
# Implement response generation logic
pass
def get_function_calls(self, user_input: str, verbose: bool = False) -> list[dict]:
# Implement function call extraction logic
pass
Ollama Model
The package includes an implementation of the EasyFNCModel
using the Ollama model. The OllamaModel
class is defined in the ollama.py
file.
To use the Ollama model:
- Pull the model from Ollama using the
ollama pull
command. For example:
ollama pull adrienbrault/nous-hermes2pro-llama3-8b:f16
- Then, the usage is as follows if you're using the
nous-hermes2pro-llama3-8b
model:
from easy_fnc.models.ollama import OllamaModel
model = OllamaModel(model_name="model_name", functions=[...])
response = model.generate(user_input="user input")
function_calls = model.get_function_calls(user_input="user input", verbose=True)
Templates
The easy_fnc
package uses JSON templates to format user input and model responses. The OllamaModel
class accepts both a string and a dictionary as parameters for the template.
To use a custom template, you have two options:
- Provide the name of a JSON template file located in the
easy_fnc/models/templates/
directory. TheOllamaModel
will automatically load the template using theload_template
method.
model = OllamaModel(model_name="model_name", functions=[...], template="custom_template")
- Provide a dictionary containing the template structure directly.
custom_template = {
"function_call_prompt": {
"beginning": "...",
"system_prompt_end": "...",
"prompt_end": "..."
},
"function_response_prompt": {
"beginning": "...",
"middle": "...",
"end": "..."
}
}
model = OllamaModel(model_name="model_name", functions=[...], template=custom_template)
The load_template
method in utils.py
can be used to load a template from a JSON file and convert it to a dictionary format that can be passed to the OllamaModel
.
from easy_fnc.utils import load_template
template_dict = load_template("path/to/custom_template.json")
model = OllamaModel(model_name="model_name", functions=[...], template=template_dict)
Users have the flexibility to use either a predefined template from the easy_fnc/models/templates/
directory or create their own custom template and provide it as a dictionary or load it from a JSON file using the load_template
method.
Contributing
Contributions to the easy_fnc
package are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the package's GitHub repository.
License
The easy_fnc
package is open-source and released under the MIT License.
This documentation provides an overview of how to use the easy_fnc
package based on the provided files. It covers the key components, including user-defined functions, core utility functions, models, configuration, and templates. Users can refer to this documentation to understand how to integrate their own functions, create custom models, and utilize the package effectively in their applications.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for easy_fnc-0.1.2.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1297c78f6b7dc29951a664fb004fe99f7d376913c7efa97d8339acaf746af41 |
|
MD5 | 356b87335e2f929cfeb4a518b4e1881d |
|
BLAKE2b-256 | 6d33211bfef9ae7d52efdfa8bd7d6214bc6dc451014e928c2d2f7d7e8b50166b |