No project description provided
Project description
easy-local-features-baselines
Just some scripts to make things easier for the local features baselines.
Installation
I suggest using a conda environment to install the requirements. You can create one using the following command.
conda create -n elf python=3.9 # the python version is not so critical, but I used 3.9.
conda activate elf
Now we can insall the requirements using pip.
pip install -r requirements.txt
pip install .
How to use
from easy_local_features.features.baseline_deal import DEAL_baseline
# from easy_local_features.features.baseline_dalf import DALF_baseline
# from easy_local_features.features.baseline_disk import DISK_baseline
# from easy_local_features.features.baseline_r2d2 import R2D2_baseline
# from easy_local_features.features.baseline_superpoint import SuperPoint_baseline
# from easy_local_features.matching.baseline_superglue import SuperGlue_baseline
# Load an image
img = cv2.imread("assets/notredame.png")
# Initialize the extractor
extractor = DEAL_baseline()
# Return keypoints and descriptors just like OpenCV
keypoints, descriptors = extractor.detectAndCompute(img)
TODO
- Add a setup.py to make it a pip package
- Make a general maching class
- The idea is to have a class that can match images using any local feature extractor and any matching method.
- Fix requirements to install automatically with the package (maybe)
- Add a script to download some datasets
- Add a download script for the pretrained models
- Add more baselines :)
- DEAL
- R2D2
- DISK
- SuperPoin
- SuperGlue
- DELF
- ASLFeat
- LoFTR
- DKM
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
easy_local_features-0.3.1.tar.gz
(86.0 kB
view details)
File details
Details for the file easy_local_features-0.3.1.tar.gz
.
File metadata
- Download URL: easy_local_features-0.3.1.tar.gz
- Upload date:
- Size: 86.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 05890073803a92df3e8969c1b698c9c579508ec9a55166affb780093b2c56882 |
|
MD5 | dd1f4a5c29f2f1677141808cf06bc1f4 |
|
BLAKE2b-256 | cf916338d59fa4604f07a2bdbc94a4dd6753ed3e9cb47ac677e89f4b5f654ab5 |