Skip to main content

No project description provided

Project description

easy-local-features-baselines

Just some scripts to make things easier for the local features baselines.

Installation

# make sure you have torch installed
# pip install torch torchvision
pip install easy-local-features

Installing from source

You may want to install from source if you want to modify the code or if you want to use the latest version. To do so, you can clone this repository and install the requirements.

I suggest using a conda environment to install the requirements. You can create one using the following command.

conda create -n elf python=3.9 # the python version is not so critical, but I used 3.9.
conda activate elf

Now we can install everything.

pip install -r requirements.txt
pip install -e .

How to use

# Choose you extractor
from easy_local_features.feature.baseline_superpoint import SuperPoint_baseline
# from easy_local_features.feature.baseline_deal import DEAL_baseline
# from easy_local_features.feature.baseline_dalf import DALF_baseline
# from easy_local_features.feature.baseline_aliked import ALIKED_baseline
# from easy_local_features.feature.baseline_alike import ALIKE_baseline
# from easy_local_features.feature.baseline_disk import DISK_baseline
# from easy_local_features.feature.baseline_r2d2 import R2D2_baseline

# also a matcher
from easy_local_features.matching.baseline_lightglue import LightGlue_baseline
# from easy_local_features.matching.baseline_superglue import SuperGlue_baseline
# from easy_local_features.matching.baseline_loftr import LoFTR_baseline
import cv2

# Load an image
img = cv2.imread("assets/notredame.png")

# Initialize the extractor
extractor = SuperPoint_baseline()
matcher = LightGlue_baseline() # works with superpoint and disk

# Return keypoints and descriptors just like OpenCV
keypoints0, descriptors0 = extractor.detectAndCompute(img)
keypoints1, descriptors1 = extractor.detectAndCompute(img)

# Match the descriptors
mkpts0, mkpts1, matches = matcher.match(keypoints0, keypoints1, descriptors0, descriptors1)

img = cv2.drawMatches(img, keypoints0, img, keypoints1, matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
cv2.imshow("Matched", img)
cv2.waitKey(0)

TODO

  • Add a setup.py to make it a pip package
  • Make a general maching class
    • The idea is to have a class that can match images using any local feature extractor and any matching method.
  • Fix requirements to install automatically with the package (maybe)
  • Add a script to download some datasets
  • Add more baselines :)
    • DEAL
    • DALF
    • DKM
    • ASLFeat
    • R2D2
    • DISK
    • SuperPoint
    • SuperGlue
    • LightGlue
    • LoFTR
    • ALIKE
    • ALIKED
      • Add LICENSE file
      • Test on MAC M1 with CPU
      • Test on Linux with CPU
      • Test with CUDA

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easy_local_features-0.3.11.tar.gz (112.3 kB view details)

Uploaded Source

File details

Details for the file easy_local_features-0.3.11.tar.gz.

File metadata

  • Download URL: easy_local_features-0.3.11.tar.gz
  • Upload date:
  • Size: 112.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for easy_local_features-0.3.11.tar.gz
Algorithm Hash digest
SHA256 619843985d0fcaf34b0f205af1d2a2c1a9d09d3457ef7232d161fdbe4b41ffb3
MD5 fc379d622f71e8121cca88b26f847d3f
BLAKE2b-256 150085d96f5e5b8846a53bb057b65912c47d7e9cfcec666e1cffd9d695d33995

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page