Skip to main content

Select module classes and functions using yaml, without any if-statements.

Project description

easy_module_attribute_getter

Installation

pip install easy_module_attribute_getter

The Problem: unmaintainable if-statements and switches

It's common to specify script parameters in yaml config files. For example:

models:
  modelA:
    densenet121:
      pretrained: True
      memory_efficient: True
  modelB:
    resnext50_32x4d:
      pretrained: True

losses:
  lossA:
    CrossEntropyLoss:
  lossB:
    L1Loss:

Usually, the config file is loaded and then various if-statements or switches are used to instantiate objects etc:

if args.models["modelA"] == "densenet121":
  modelA = torchvision.models.densenet121(pretrained = args.pretrained)
elif args.models["modelA"] == "googlenet":
  modelA = torchvision.models.googlenet(pretrained = args.pretrained)
elif args.models["modelA"] == "resnet50":
  modelA = torchvision.models.resnet50(pretrained = args.pretrained)
elif args.models["modelA"] == "inception_v3":
  modelA = torchvision.models.inception_v3(pretrained = args.pretrained)
...
if args.losses["lossA"] == "CrossEntropyLoss":
  lossA = torch.nn.CrossEntropyLoss()
elif args.losses["lossA"] == "L1Loss":
  lossA = torch.nn.L1Loss()
...

The Solution

Use this package, and get rid of all those annoying if-statements and switches:

from easy_module_attribute_getter import PytorchGetter
pytorch_getter = PytorchGetter()
models = pytorch_getter.get_multiple("model", args.models)
losses = pytorch_getter.get_multiple("loss", args.losses)

"models" and "losses" are dictionaries that map from strings to the desired objects.

Load one or multiple yaml files into one args object

from easy_module_attribute_getter import YamlReader
yaml_reader = YamlReader()
args, _, _ = yaml_reader.load_yamls(['models.yaml'])

Provide a list of filepaths:

args, _, _ = yaml_reader.load_yamls(['models.yaml', 'optimizers.yaml', 'transforms.yaml'])

Or provide a root path and a dictionary mapping subfolder names to the bare filename

root_path = "/where/your/yaml/subfolders/are/"
subfolder_to_name_dict = {"models": "default", "optimizers": "special_trial", "transforms": "blah"}
args, _, _ = yaml_reader.load_yamls(root_path=root_path, subfolder_to_name_dict=subfolder_to_name_dict)

Merge or override complex config options via the command line:

The example yaml file contains 'models' which maps to a nested dictionary containing modelA and modelB. It's easy to add another key to models at the command line, using the standard python notation for nested dictionaries.

python example.py --models {modelC: {googlenet: {pretrained: True}}}

Then in your script:

import argparse
yaml_reader = YamlReader(argparse.ArgumentParser())
args, _, _ = yaml_reader.load_yamls(['models.yaml', 'losses.yaml'], max_merge_depth=1)

Now args.models contains 3 models.

If in general you'd like to merge config options, then in the load_yamls function, set the max_merge_depth argument to the number of sub-dictionaries you'd like the merge to apply to.

What if you have max_merge_depth set to 1, but want to do a total override for a particular flag? In that case, just append ~OVERRIDE~ to the flag:

python example.py --models~OVERRIDE~ {modelC: {googlenet: {pretrained: True}}}

Now args.models will contain just modelC, even though max_merge_depth is set to 1.

Easily register your own modules into an existing getter.

from pytorch_metric_learning import losses, miners, samplers 
pytorch_getter = PytorchGetter()
pytorch_getter.register('loss', losses) 
pytorch_getter.register('miner', miners)
pytorch_getter.register('sampler', samplers)
metric_loss = pytorch_getter.get('loss', class_name='ProxyNCALoss', return_uninitialized=True)
kl_div_loss = pytorch_getter.get('loss', class_name='KLDivLoss', return_uninitialized=True)

In the above example, the 'loss' key already exists, so the 'losses' module will be appended to the existing module.

Pytorch-specific features

Transforms

Specify transforms in your config file:

transforms:
  train:
    Resize:
      size: 256
    RandomResizedCrop:
      scale: 0.16 1
      ratio: 0.75 1.33
      size: 227
    RandomHorizontalFlip:
      p: 0.5

  eval:
    Resize:
      size: 256
    CenterCrop:
      size: 227

Then load composed transforms in your script:

transforms = {}
for k, v in args.transforms.items():
    transforms[k] = pytorch_getter.get_composed_img_transform(v, mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])

The transforms dict now contains:

{'train': Compose(
    Resize(size=256, interpolation=PIL.Image.BILINEAR)
    RandomResizedCrop(size=(227, 227), scale=(0.16, 1), ratio=(0.75, 1.33), interpolation=PIL.Image.BILINEAR)
    RandomHorizontalFlip(p=0.5)
    ToTensor()
    Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
), 'eval': Compose(
    Resize(size=256, interpolation=PIL.Image.BILINEAR)
    CenterCrop(size=(227, 227))
    ToTensor()
    Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)}

Optimizers, schedulers, and gradient clippers

Optionally specify the scheduler and gradient clipping norm, within the optimizer parameters.

optimizers:
  modelA:
    Adam:
      lr: 0.00001
      weight_decay: 0.00005
      scheduler:
        StepLR:
          step_size: 2
          gamma: 0.95
      clip_grad_norm: 1
  modelB:
    RMSprop:
      lr: 0.00001
      weight_decay: 0.00005

Create the optimizers:

optimizers = {}
schedulers = {}
grad_clippers = {}
for k, v in models.items():
	optimizers[k], schedulers[k], grad_clippers[k] = pytorch_getter.get_optimizer(v, yaml_dict=args.optimizers[k])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easy_module_attribute_getter-0.9.19.tar.gz (6.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file easy_module_attribute_getter-0.9.19.tar.gz.

File metadata

  • Download URL: easy_module_attribute_getter-0.9.19.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for easy_module_attribute_getter-0.9.19.tar.gz
Algorithm Hash digest
SHA256 b4e0f570de4ed7d68715038cdde13cab84b7b328d7d5320ade040a05c72d6c64
MD5 bbe6e42ec22872968ed6aeeb61ce54a1
BLAKE2b-256 8c737bf46099a7a203b5094a53aaa397cbf880d6be01aab5180ce98a523c10c1

See more details on using hashes here.

File details

Details for the file easy_module_attribute_getter-0.9.19-py3-none-any.whl.

File metadata

  • Download URL: easy_module_attribute_getter-0.9.19-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0.post20191030 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.5

File hashes

Hashes for easy_module_attribute_getter-0.9.19-py3-none-any.whl
Algorithm Hash digest
SHA256 cac9f80f610354c2abe2f197e82537a9334828d0b01949d34421ce39bcd988ad
MD5 136cc33a3528bccd717ccc4c58619a00
BLAKE2b-256 1e9515887d838a4593a77b8dd0c40926aed7a9e4eca23eb0cfe834ef4d8ab3af

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page