Skip to main content

one stop shop for matplotlib plots

Project description

Documentation Status

Downloads

Matplotlib is great library which offers huge flexibility due to its object oriented programming style. However, most of the times, we the users don't need that much flexibiliy and just want to get things done as quickly as possible. For example why should I write at least three lines to plot a simple array with legend when same can be done in one line and my purpose is just to view the array. Why I can't simply do plot(data) or imshow(img). This motivation gave birth to this library. easy_mpl stands for easy maplotlib. The purpose of this is to ease the use of matplotlib while keeping the flexibility of object oriented programming paradigm of matplotlib intact. Using these one liners will save the time and will not hurt. Moreover, you can swap every function of this library with that of matplotlib and vice versa.

Installation

This package can be installed using pip from pypi using following command

pip install easy_mpl

Usage

plot

from easy_mpl import plot
import numpy as np
plot(np.random.random(100))
# use x and y
plot(np.arange(100), np.random.random(100))
# use x and y with marker style
plot(np.arange(100), np.random.random(100), '.')

plot(np.random.random(100), '.')
# use cutom marker
plot(np.random.random(100), '--*')

plot(np.random.random(100), '--*', label='label')
# log transform y-axis
plot(np.random.random(100), '--*', logy=True, label='label')

bar_chart

from easy_mpl import bar_chart
bar_chart([1,2,3,4,4,5,3,2,5])
# specifying labels
bar_chart([3,4,2,5,10], ['a', 'b', 'c', 'd', 'e'])
# sorting the data
bar_chart([1,2,3,4,4,5,3,2,5], sort=True)

regplot

import numpy as np
from easy_mpl import regplot
x_, y_ = np.random.random(100), np.random.random(100)
regplot(x_, y_)

imshow

import numpy as np
from easy_mpl import imshow
x = np.random.random((10, 5))
imshow(x, annotate=True)
# show colorbar
imshow(x, colorbar=True)

hist

from easy_mpl import hist
import numpy as np
hist(np.random.random((10, 1)))

pie

from easy_mpl import pie
import numpy as np
pie(np.random.randint(0, 3, 100))
# or by directly providing fractions
pie([0.2, 0.3, 0.1, 0.4])

scatter

import numpy as np
from easy_mpl import scatter
import matplotlib.pyplot as plt
x = np.random.random(100)
y = np.random.random(100)
scatter(x, y, show=False)
# show colorbar
scatter(x, y, colorbar=True, show=False)
# retrieve axes for further processing
ax, _ = scatter(x, y, show=False)
assert isinstance(ax, plt.Axes)

contour

from easy_mpl import contour
import numpy as np
x = np.random.uniform(-2, 2, 200)
y = np.random.uniform(-2, 2, 200)
z = x * np.exp(-x**2 - y**2)
contour(x, y, z, fill_between=True, show_points=True)
# show contour labels
contour(x, y, z, label_contours=True, show_points=True)

dumbbell_plot

import numpy as np
from easy_mpl import dumbbell_plot
st = np.random.randint(1, 5, 10)
en = np.random.randint(11, 20, 10)
dumbbell_plot(st, en)
# modify line color
dumbbell_plot(st, en, line_kws={'color':"black"})

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easy_mpl-0.1.0.tar.gz (16.0 kB view details)

Uploaded Source

File details

Details for the file easy_mpl-0.1.0.tar.gz.

File metadata

  • Download URL: easy_mpl-0.1.0.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for easy_mpl-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d41da3b1dd9ad1a0e4ebf271b8afd4a1275ebfbcddd903fbbcfee80bcf4722fc
MD5 8c99dafa42b4aecfc4a2b9fb5ae998e4
BLAKE2b-256 1d32e276dc2768c3792ff08baddcfbbf0266a906dbfe799b2eee67f624f26106

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page