Skip to main content

No project description provided

Project description

Easy VC

簡単、軽量を目的とした音声変換(Voice Conversion)です。

このリポジトリは開発用のリポジトリです。

Description

Usage

トレーニング

noF0

ファイルをraw_data/に展開しておく。

poetry run download weights
# ↓ valid_numが全体のデータセットの数を超えないように。
poetry run preprocess --project_name amitaro --wav_dir raw_data/amitaro --valid_num 10 --test_dir raw_data/test_data --sample_rate 16000 --jobs 4
poetry run extract_feature --project_name amitaro --version 1 --device_id 0
poetry run generate_filelist --project_name amitaro --version 1 --useF0 no --sid 0
poetry run train --project_name amitaro --config_path configs/16k_v2.json --sample_rate 16000 --use_f0 False --total_epoch 10 --batch_size 10 --device_id 0 --log_step_interval 10 --val_step_interval 10 --test_step_interval 10 --save_model_epoch_interval 2 --cache_gpu False --freeze_vocoder True


poetry run train --project_name amitaro --config_path configs/16k_v2.json --sample_rate 16000 --use_f0 False --total_epoch 10 --batch_size 10 --device_id 0 --log_step_interval 10 --val_step_interval 10 --test_step_interval 10 --save_model_epoch_interval 2 --cache_gpu False --freeze_vocoder True

poetry run train --project_name amitaro --config_path configs/16k_v2.json --sample_rate 16000 --use_f0 False --total_epoch 1000 --batch_size 10 --device_id 0 --log_step_interval 100 --val_step_interval 100 --test_step_interval 100 --save_model_epoch_interval 50 --cache_gpu False --freeze_vocoder True

# レジューム
poetry run train --project_name amitaro --config_path configs/16k_v2.json --sample_rate 16000 --use_f0 False --total_epoch 10 --batch_size 10 --device_id 0 --log_step_interval 10 --val_step_interval 10 --test_step_interval 10 --save_model_epoch_interval 2 --cache_gpu False --freeze_vocoder True --checkpoint_path trainer/amitaro/logs/model-e4-s432.pt

Export

poetry run export_onnx --torch_path trainer/sangoku/logs/model-e150-s91050-gen.pt --output_path trainer/sangoku/sangoku.onnx
poetry run export_onnx --torch_path trainer/sangoku/logs/model-nof0-e201-s122007-gen.pt --output_path trainer/sangoku/sangoku.onnx
poetry run infer_with_onnx --onnx_path trainer/sangoku/sangoku.onnx --wav_path raw_data/test_data/queens.wav

pyinstaller

コマンドを1ファイルにする

poetry run easy_vc preprocess --project_name amitaro --wav_dir raw_data/amitaro --valid_num 10 --test_dir raw_data/test_data --sample_rate 16000 --jobs 4
poetry run easy_vc extract_feats --project_name amitaro --version 1 --device_id 0
poetry run easy_vc generate_filelist --project_name amitaro --version 1 --useF0 no --sid 0
poetry run easy_vc train --project_name amitaro --config_path configs/16k_v2.json --sample_rate 16000 --use_f0 False --total_epoch 10 --batch_size 10 --device_id 0 --log_step_interval 10 --val_step_interval 10 --test_step_interval 10 --save_model_epoch_interval 2 --cache_gpu False --freeze_vocoder True
.venv/bin/pyinstaller  easy_vc_dev/cli.py --onefile  --add-data easy_vc_dev/utils/whisper/assets/*:easy_vc_dev/utils/whisper/assets/
cli preprocess --project_name tsukuyomi --wav_dir raw_data/tsukuyomi --valid_num 10 --test_dir raw_data/test_data --sample_rate 16000 --jobs 4
cli extract_feats --project_name tsukuyomi --version 1 --device_id 0
cli generate_filelist --project_name tsukuyomi --version 1 --useF0 no --sid 0

音声変換

リアルタイム音声変換

Reference

このソフトウェアは次のリポジトリの実装を参考にしています。

Retrieval-based-Voice-Conversion-WebUI hifi-gan

trainの種類

ckpt finetune vocoder_ckpt discriminator_ckpt
事前学習モデル 事前学習をするとき
モデル作成 事前学習など既存モデルからの学習
モデル作成 Finetune 既存モデルからのfinetune(learning rateなどの復帰)
モデル作成 vocoder ckpt レ(opt) レ(opt) Vocoderを上書き
モデル作成 discriminator ckpt レ(opt) レ(opt) Discriminatorの上書き(NOT IMPLEMENTED)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easy_vc_dev-0.1.1.tar.gz (514.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

easy_vc_dev-0.1.1-py3-none-any.whl (540.4 kB view details)

Uploaded Python 3

File details

Details for the file easy_vc_dev-0.1.1.tar.gz.

File metadata

  • Download URL: easy_vc_dev-0.1.1.tar.gz
  • Upload date:
  • Size: 514.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for easy_vc_dev-0.1.1.tar.gz
Algorithm Hash digest
SHA256 cf46ffba4a9a53e4cce4f3e3b5f607fe243547f1c65cf228c8e7973120147d98
MD5 731c26d56c3a1be99667f164d029cc65
BLAKE2b-256 71cfcb2535fe225bcec76edd7013831319742dc43ff20fb9a64880412de5a9a6

See more details on using hashes here.

File details

Details for the file easy_vc_dev-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: easy_vc_dev-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 540.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.12 Linux/5.15.133.1-microsoft-standard-WSL2

File hashes

Hashes for easy_vc_dev-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9bd97393fc90d497aa0b09286f4c01468abe07702634c4cb9e73508a66eaadd0
MD5 20f69eb4d2c1642e1451b28ae9fa269d
BLAKE2b-256 6973548e47190938c14197631152d60f07e6a0a49077be6ab087c680755e38fe

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page