Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

A python package to do auto differentiation.

Project description

[![Build Status](https://travis-ci.org/amartya18x/easyGrad.svg?branch=master)](https://travis-ci.org/amartya18x/easyGrad)
# Easy Grad

This library aims to provide an easy implementation of doing symbolic operations in python
## Operators allowed

- *exp(x)* and *log(x)*
```Python
def testOps():
x = Integer('x')
y = ops.log(x)
z = ops.exp(y)
graph = GradGraph(z)
graph.getOutput({x: 1})
graph.getGradients(wrt=x)
print x.gradient
```
- *Sigmoid(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.sigmoid(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```
- *Tanh(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.tanh(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```

## Testing

```Python
def gradTestSimple():
a = Integer("a")
b = Integer("b")
c = a + b
d = b + 6
e = c * d
graph = GradGraph(e)
graph.getOutput({a: 32,
b: 11})
graph.getGradients(wrt=b)
print a.gradient, b.gradient
```
### Here is a more complex example.
```Python
def gradTest():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
t = y * k
m = k + t
n = m * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
### This is the same examples as above but the commands are not three op commands.

```Python
def gradTestLong():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
n = (k + (y * p * z)) * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
Tensor Operations
```Python

def dotProduct():
x = DoubleTensor("Tensor1")
y = x.dot([3, 4])
z = y.dot([4, 5])
graph = GradGraph(z)
output = graph.getOutput({x: [3, 4]})
graph.getGradients(wrt=x)
assert(np.all(output == [100, 125]))
assert(np.all(x.gradient == [[ 12., 16.], [ 15., 20.]]))



def TensorOp():
x = DoubleTensor("Tensor1")
y = x - [3, 4]
z = ops.log(y * x)
graph = GradGraph(z)
output = graph.getOutput({x: [10]})
assert(np.all(np.isclose(output, np.log(10 * (10 - np.asarray([3, 4]))))))
graph.getGradients(wrt=x)
a = 2 * 10 - np.asarray([3, 4])
b = 1.0/np.exp(np.asarray(output))
assert(np.all(np.isclose(x.gradient, a * b)))


```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for easyGrad, version 1.0.0
Filename, size File type Python version Upload date Hashes
Filename, size easyGrad-1.0.0.tar.gz (6.4 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page