Skip to main content

A python package to do auto differentiation.

Project description

[![Build Status](https://travis-ci.org/amartya18x/easyGrad.svg?branch=master)](https://travis-ci.org/amartya18x/easyGrad)
# Easy Grad

This library aims to provide an easy implementation of doing symbolic operations in python
## Operators allowed

- *exp(x)* and *log(x)*
```Python
def testOps():
x = Integer('x')
y = ops.log(x)
z = ops.exp(y)
graph = GradGraph(z)
graph.getOutput({x: 1})
graph.getGradients(wrt=x)
print x.gradient
```
- *Sigmoid(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.sigmoid(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```
- *Tanh(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.tanh(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```

## Testing

```Python
def gradTestSimple():
a = Integer("a")
b = Integer("b")
c = a + b
d = b + 6
e = c * d
graph = GradGraph(e)
graph.getOutput({a: 32,
b: 11})
graph.getGradients(wrt=b)
print a.gradient, b.gradient
```
### Here is a more complex example.
```Python
def gradTest():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
t = y * k
m = k + t
n = m * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
### This is the same examples as above but the commands are not three op commands.

```Python
def gradTestLong():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
n = (k + (y * p * z)) * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
Tensor Operations
```Python

def dotProduct():
x = DoubleTensor("Tensor1")
y = x.dot([3, 4])
z = y.dot([4, 5])
graph = GradGraph(z)
output = graph.getOutput({x: [3, 4]})
graph.getGradients(wrt=x)
assert(np.all(output == [100, 125]))
assert(np.all(x.gradient == [[ 12., 16.], [ 15., 20.]]))



def TensorOp():
x = DoubleTensor("Tensor1")
y = x - [3, 4]
z = ops.log(y * x)
graph = GradGraph(z)
output = graph.getOutput({x: [10]})
assert(np.all(np.isclose(output, np.log(10 * (10 - np.asarray([3, 4]))))))
graph.getGradients(wrt=x)
a = 2 * 10 - np.asarray([3, 4])
b = 1.0/np.exp(np.asarray(output))
assert(np.all(np.isclose(x.gradient, a * b)))


```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyGrad-1.0.0.tar.gz (6.4 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page