Skip to main content

Simplified machine-learning driven earthquake detection, location, and analysis

Project description

easyQuake

Simplified machine-learning driven earthquake detection, location, and analysis in one easy-to-implement python package.

On most systems you should be able to simply:

pip install easyQuake

To stay on the bleeding edge of updates:

pip install easyQuake --upgrade

Or if you need to tweak something, like the number of GPUs in gpd_predict, you could:

git clone https://github.com/jakewalter/easyQuake.git
cd easyQuake
pip install .

If you find this useful, please cite:

Walter, J. I., P. Ogwari, A. Thiel, F. Ferrer, and I. Woelfel (in press), easyQuake: Putting machine 
learning to work for your regional seismic network or local earthquake study, Seismological Research 
Letters

Requirements

This code leverages machine-learning for earthquake detection. You should have suitable hardware to run CUDA/Tensorflow, which usually means some sort of GPU. This has been tested on servers with nvidia compute cards and modest multi-core desktop with consumer gaming nvidia card (e.g. Geforce 1050 Ti). The event-mode can be run efficiently enough on a laptop.

  • Requires nvidia-cuda-toolkit, obspy, keras==2.3.1, tensorflow-gpu==2.1 (if using multiple GPUs only tensorflow 1.15 is tested), basemap
  • I've found that the the easiest way to install cuda, tensorflow, and keras is through installing Anaconda python and running conda install tensorflow-gpu==2.1
  • Because tensorflow-gpu 2.1 requires python 3.7 (not the latest version), you might find an easier road creating a new environment:
conda create -n easyquake python=3.7 anaconda
conda activate easyquake
conda install tensorflow-gpu==2.1
conda install keras
conda install obspy -c conda-forge
pip install easyQuake

Running easyQuake

The example runs easyQuake for a recent M6.5 earthquake in Idaho for the 2 days around the earthquake (foreshocks and aftershocks). The catalog from running the example is in the examples folder: https://github.com/jakewalter/easyQuake/blob/master/examples/catalog_idaho_2days.xml

from easyQuake import download_mseed
from easyQuake import daterange
from datetime import date
from easyQuake import combine_associated
from easyQuake import detection_continuous
from easyQuake import association_continuous

from easyQuake import magnitude_quakeml
from easyQuake import simple_cat_df

import matplotlib.pyplot as plt
maxkm = 300
maxdist=300
lat_a = 42
lat_b = 47.5
lon_a = -118
lon_b = -111


start_date = date(2020, 3, 31)
end_date = date(2020, 4, 2)

project_code = 'idaho'
project_folder = '/data/id'
for single_date in daterange(start_date, end_date):
    print(single_date.strftime("%Y-%m-%d"))
    dirname = single_date.strftime("%Y%m%d")
    download_mseed(dirname=dirname, project_folder=project_folder, single_date=single_date, minlat=lat_a, maxlat=lat_b, minlon=lon_a, maxlon=lon_b)
    detection_continuous(dirname=dirname, project_folder=project_folder, project_code=project_code, single_date=single_date, machine=True,local=True)
    association_continuous(dirname=dirname, project_folder=project_folder, project_code=project_code, maxdist=maxdist, maxkm=maxkm, single_date=single_date, local=True)

cat, dfs = combine_associated(project_folder=project_folder, project_code=project_code)
cat = magnitude_quakeml(cat=cat, project_folder=project_folder,plot_event=True)
cat.write('catalog_idaho.xml',format='QUAKEML')


catdf = simple_cat_df(cat)
plt.figure()
plt.plot(catdf.index,catdf.magnitude,'.')

Tips for successful outputs

Within your systems, consider running driver scripts as nohup background processes nohup python ~/work_dir/okla_daily.py &. In this way, one could cat nohup.out | grep Traceback to understand python errors or grep nohup.out | Killed to understand when the system runs out of memory.

Running easyQuake with SLURM

If you have access to shared computing resources that utilize SLURM, you can drive easyQuake by making a bash script to run the example code or any code (thanks to Xiaowei Chen at OU). Save the following to a drive_easyQuake.sh and then run it

#!/bin/bash
#
#SBATCH --partition=gpu_cluster
#SBATCH --ntasks=1
#SBATCH --mem=1024
#SBATCH --output=easyquake_%J_stdout.txt
#SBATCH --error=easyquake_%J_stderr.txt
#SBATCH --time=24:00:00
#SBATCH --job-name=easyquake
#SBATCH --mail-user=user@school.edu
#SBATCH --mail-type=ALL
#SBATCH --chdir=/drive/group/user/folder
conda init bash
bash
conda activate easyquake
python idaho_example.py

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyQuake-0.5.1.tar.gz (19.4 MB view details)

Uploaded Source

Built Distribution

easyQuake-0.5.1-py3-none-any.whl (19.4 MB view details)

Uploaded Python 3

File details

Details for the file easyQuake-0.5.1.tar.gz.

File metadata

  • Download URL: easyQuake-0.5.1.tar.gz
  • Upload date:
  • Size: 19.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for easyQuake-0.5.1.tar.gz
Algorithm Hash digest
SHA256 dc84672ba6f9f219457bb9cb227d94d0053562b0c13c1082871adf4da2b6f185
MD5 b364d74c459d5825ecb4558ee414b00d
BLAKE2b-256 a5e2d12b80c798890b53dc115f258bcfcd683afcc879c73fccc48245972d3469

See more details on using hashes here.

File details

Details for the file easyQuake-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: easyQuake-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 19.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for easyQuake-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5c09fdcf50f6715a1bde8e257a2c4823fad2d8231ea20a27236fa4d9c24ed5f1
MD5 69c84f2cdaad349371c496407c176bc6
BLAKE2b-256 7b83b7d9e101a2dcd4eb09dd3a580278d9a2674ca5a40db6ec937708adf24bbb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page