Skip to main content

Easy access to the DES DB. Enhanced command line SQL interpreter client for DES

Project description

# easyaccess <a href="https://github.com/mgckind/easyaccess/releases/tag/1.4.3"> <img src="https://img.shields.io/badge/release-v1.4.3-blue.svg" alt="latest release" /></a> <a href="https://github.com/mgckind/easyaccess/blob/master/LICENSE.txt"><img src="https://img.shields.io/badge/license-NCSA%20License-blue.svg" alt="License" /> </a> <a href="https://pypi.python.org/pypi/easyaccess/1.4.3"><img src="https://img.shields.io/badge/pypi-v1.4.3-orange.svg" alt="pypi version"/></a><a href="https://anaconda.org/mgckind/easyaccess"> <img src="https://img.shields.io/badge/Anaconda Cloud-v1.4.3-blue.svg" /> </a>
![help_screen](data/help.gif)

Enhanced command line SQL interpreter client for astronomical databases.

Python Command Line Interpreter to access Oracle DES DB
using cx_Oracle

For a short tutorial check [here](http://matias-ck.com/easyaccess)

**Current version = 1.4.3**

## Requirements

- Oracle Client > 11g.2 (External library, no python)
Check [here](https://opensource.ncsa.illinois.edu/confluence/display/DESDM/Instructions+for+installing+Oracle+client+and+easyaccess+without+EUPS) for instructions on how to install these libraries
- [cx_Oracle](https://bitbucket.org/anthony_tuininga/cx_oracle)

Note that cx_Oracle needs libaio on some Linux systems (e.g., #98)

Note that cx_Oracle needs libbz2 on some Linux systems
- [fitsio](https://github.com/esheldon/fitsio) >= 0.9.6
- [pandas](http://pandas.pydata.org/) >= 0.14
- [termcolor](https://pypi.python.org/pypi/termcolor)
- [PyTables](http://pytables.github.io/) (optional, for hdf5 output)
- [future](http://python-future.org/) (for python 2/3 compatibility)
- [requests](http://docs.python-requests.org/en/master/)
- [gnureadline](https://github.com/ludwigschwardt/python-gnureadline) (optional, for better console behavior in OS X)
- importlib (This is only needed if running python 2.6)
- **Note that you need to install python-future for python2/3 compatibility**


## Some *nice* features
- Nice output format (using pandas)
- Very flexible configuration
- Smart tab completion for commands, table names, column names and file paths accordingly
- write output results to csv, tab, fits files or HDF5 files
- load tables from csv, fits or hdf5 directly into DB (memory friendly by using number of rows or memory limit)
- intrinsic db commands to describe tables, own schema, quota and more
- It can be imported as module from python, complete python API
- Can run command directly from command line
- Load sql query from file and/or from editor
- Show the execution plan of a query if required
- Can run python functions inline query
- Many more

## Conda installation
Now easyaccess can be installed using [conda](http://conda.pydata.org/docs/install/quick.html) out of the box!

conda install easyaccess==1.4.3 -c mgckind

## Pip installation
easyaccess can also be installed using `pip` but it'd require the installation of the oracle instant client first

pip install easyaccess==1.4.3

## Interactive interpreter

Assuming that ```easyaccess``` is in your path, you can enter the interactive interpreter by calling ```easyaccess``` without any command line arguments:

easyaccess

### Running SQL commands
Once inside the interpreter run SQL queries by adding a ";" at the end::

DESDB ~> select ... from ... where ... ;

To save the results into a table add ">" after the end of the query (after ";") and namefile at the end of line

DESDB ~> select ... from ... where ... ; > test.fits

The file types supported so far are: .csv, .tab, .fits, and .h5. Any other extension is ignored.

### Load tables
To load a table it needs to be in a csv format with columns names in the first row
the name of the table is taken from filename or with optional argument --tablename

DESDB ~> load_table <filename> --tablename <mytable> --chunksize <number of rows to read/upload> --memsize <memory in MB to read at a time>

The --chunsize and --memsize are optional arguments to facilitate uploading big files.

### Load SQL queries
To load SQL queries just run:

DESDB ~> loadsql <filename.sql>
or

DESDB ~> @filename.sql

The query format is the same as the interpreter, SQL statement must end with ";" and to write output files the query must be followed by " > <output file>"

### Configuration

The configuration file is located at ```$HOME/.easyaccess/config.ini``` but everything can be configured from inside easyaccess type:

DESDB ~> help config

to see the meanings of all the options, and:

DESDB ~> config all show

to see the current values, to modify one value, e.g., the prefetch value

DESDB ~> config prefetch set 50000

and to see any particular option (e.g., timeout):

DESDB ~> config timeout show

## Command-line usage

Much of the functionality provided through the interpreter is also available directly from the command line. To see a list of command-line options, use the ```--help``` option

easyaccess --help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyaccess-1.4.3.tar.gz (4.7 MB view details)

Uploaded Source

Built Distribution

easyaccess-1.4.3-py2.py3-none-any.whl (54.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyaccess-1.4.3.tar.gz.

File metadata

  • Download URL: easyaccess-1.4.3.tar.gz
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for easyaccess-1.4.3.tar.gz
Algorithm Hash digest
SHA256 5d04382a9e654fb9ec4717dda8f94c4246780ff5d30a889c39d0f0621a8094ee
MD5 ae91a0e7569f052d873d6f3c9e521ed1
BLAKE2b-256 529bc9725504e17434f735ecab2bb9e948905b085f2015bb527d637317f3af66

See more details on using hashes here.

File details

Details for the file easyaccess-1.4.3-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for easyaccess-1.4.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 30912bd6fe944b665c3c42b2979cd8c1690d1fd328ae2ffe72ae92c3c6a50343
MD5 eb85ea45a1de0d9f6a6ccb9f24a78d2d
BLAKE2b-256 85959e7cbbe89e3d6286da225042c4f0619ef70549bfef889f48a833d1c3ca72

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page