A useful tool to Exploratory Data Analysis
Project description
1,Introduction
The easyeda is a simple but useful tool to do Exploratory Data Analysis in Machine Learning. It can be used in both classification task and regression task.
2,Use Example
First, you can use pip to install easyeda.
pip install easyeda
Then, you can use it like below.
from easyeda import eda
import pandas as pd
from sklearn import datasets
from sklearn.model_selection import train_test_split
##
boston = datasets.load_boston()
df = pd.DataFrame(boston.data,columns = boston.feature_names)
df["label"] = boston.target
dftrain,dftest = train_test_split(df,test_size = 0.3)
dfeda = eda(dftrain,dftest,language="Chinese")
3,Contact to the author
Github: https://github.com/lyhue1991/easyeda
Email: lyhue1991@163.com
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
easyeda-2.0.tar.gz
(3.7 kB
view details)
Built Distribution
easyeda-2.0-py3-none-any.whl
(4.7 kB
view details)
File details
Details for the file easyeda-2.0.tar.gz
.
File metadata
- Download URL: easyeda-2.0.tar.gz
- Upload date:
- Size: 3.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c8426eb6fd9ad146988063d8d72d60285f10d5076e16b3540dda36d1b7cd515 |
|
MD5 | 5698636a77687bca58e1a5c738cc8829 |
|
BLAKE2b-256 | b05b9e3161234dfd2b19b6175e27ceef000b92b47767050ead43535659ab2c51 |
File details
Details for the file easyeda-2.0-py3-none-any.whl
.
File metadata
- Download URL: easyeda-2.0-py3-none-any.whl
- Upload date:
- Size: 4.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 602eec8b1521ca4037ebebfbf344fad3b6c44a026c079f9995b4bc4a06553fc1 |
|
MD5 | f589df0bafa68efe2d668397a9033e42 |
|
BLAKE2b-256 | 7bf98530e3738fb4dfcf6a036169a1e6ec09efc74c8bf4347fbcc83a2016ad90 |