Skip to main content

EasyGA is a python package designed to provide an easy-to-use Genetic Algorithm. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.

Project description

EasyGA - Genetic Algorithms made Easy

EasyGA is a python package designed to provide an easy-to-use Genetic Algorithm. The package is designed to work right out of the box, while also allowing the user to customize features as they see fit.

Check out our Wiki or Youtube for more information.

Installation:

Run python's pip3 to install:

pip3 install EasyGA

Getting started with EasyGA(Basic Example):

import EasyGA

# Create the Genetic algorithm
ga = EasyGA.GA()

# Evolve the whole genetic algorithm until termination has been reached
ga.evolve()

# Print out the current generation and the population
ga.print_generation()
ga.print_population()

Output:

Current Generation      : 15
Current population:
Chromosome - 0 [7][4][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 1 [7][4][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 2 [7][4][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 3 [7][4][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 4 [7][2][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 5 [7][2][4][5][3][5][5][8][3][7] / Fitness = 3
Chromosome - 6 [5][8][8][6][10][10][5][7][2][7] / Fitness = 2
Chromosome - 7 [5][8][8][6][10][10][5][7][2][7] / Fitness = 2
Chromosome - 8 [5][8][8][6][10][10][5][7][2][7] / Fitness = 2
Chromosome - 9 [7][2][8][10][3][5][5][8][1][7] / Fitness = 2

Getting started with EasyGA (Password Cracker Example):

import EasyGA
import random

ga = EasyGA.GA()

word = input("Please enter a word: \n")

# Basic Attributes
ga.chromosome_length = len(word)
ga.fitness_goal = len(word)

# Size Attributes
ga.population_size = 50
ga.generation_goal = 10000

# User definded fitness
def password_fitness(chromosome):

    return sum(1 for gene, letter
        in zip(chromosome, word)
        if gene.value == letter
    )

ga.fitness_function_impl = password_fitness

# What the genes will look like.
ga.gene_impl = lambda: random.choice(["A","a","B","b","C","c","D","d","E","e",
                                      "F","f","G","g","H","h","I","i","J","j",
                                      "K","k","L","l","M","m","N","n","O","o",
                                      "P","p","Q","q","R","r","S","s","T","t",
                                      "U","u","V","v","W","w","X","x","Y","y",
                                      "Z","z"," "])

# Evolve the gentic algorithm
ga.evolve()

# Print out the current generation and the population
ga.print_generation()
ga.print_population()

# Show graph of progress
ga.graph.highest_value_chromosome()
ga.graph.show()

Ouput:

Please enter a word: 
EasyGA
Current Generation 	: 44
Chromosome - 0 [E][a][s][y][G][A] / Fitness = 6
Chromosome - 1 [E][a][s][Y][G][A] / Fitness = 5
Chromosome - 2 [E][a][s][O][G][A] / Fitness = 5
Chromosome - 3 [E][a][s][Y][G][A] / Fitness = 5
Chromosome - 4 [E][a][s][c][G][A] / Fitness = 5
Chromosome - 5 [E][a][s][c][G][A] / Fitness = 5
Chromosome - 6 [E][a][s][y][Z][A] / Fitness = 5
Chromosome - 7 [E][a][s][Y][G][A] / Fitness = 5
Chromosome - 8 [E][a][s][y][Z][A] / Fitness = 5
Chromosome - 9 [E][a][s][Y][G][A] / Fitness = 5

Issues

We would love to know if your having any issues. Please start a new issue on the Issues Page.

Local System Approach

Download the repository to some folder on your computer.

https://github.com/danielwilczak101/EasyGA/archive/master.zip

Use the run.py file inside the EasyGA folder to run your code. This is a local version of the package.

Check out our wiki for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EasyGA-1.6.1.tar.gz (22.9 kB view details)

Uploaded Source

Built Distribution

EasyGA-1.6.1-py3-none-any.whl (29.0 kB view details)

Uploaded Python 3

File details

Details for the file EasyGA-1.6.1.tar.gz.

File metadata

  • Download URL: EasyGA-1.6.1.tar.gz
  • Upload date:
  • Size: 22.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.6

File hashes

Hashes for EasyGA-1.6.1.tar.gz
Algorithm Hash digest
SHA256 e691cf22370c9dd79e2259b6a0744554648ebbe3ed1122536069a568494b7fd3
MD5 881fd780a0315e21e0811dcea131d50a
BLAKE2b-256 132316e5a069cdd672bd07009a27b35c98d09cab1e7e1bbc5148a33fef14af98

See more details on using hashes here.

File details

Details for the file EasyGA-1.6.1-py3-none-any.whl.

File metadata

  • Download URL: EasyGA-1.6.1-py3-none-any.whl
  • Upload date:
  • Size: 29.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.6

File hashes

Hashes for EasyGA-1.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4d3c68e05fd4b013b62271e40d4fad58ab5ec3df6993ccdc60086ac9e5d8f87d
MD5 9b4f9e8ae6925c681c0ee34c7cd931cf
BLAKE2b-256 973f3bafee3d5f9323862cead320f3c3f43e055c95dc864722af094a201fd3e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page