Skip to main content

A python package to do auto differentiation.

Project description

[![Build Status](https://travis-ci.org/amartya18x/easyGrad.svg?branch=master)](https://travis-ci.org/amartya18x/easyGrad)
# Easy Grad

This library aims to provide an easy implementation of doing symbolic operations in python
## Operators allowed

- *exp(x)* and *log(x)*
```Python
def testOps():
x = Integer('x')
y = ops.log(x)
z = ops.exp(y)
graph = GradGraph(z)
graph.getOutput({x: 1})
graph.getGradients(wrt=x)
print x.gradient
```
- *Sigmoid(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.sigmoid(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```
- *Tanh(x)*
```Python

def activ_fns():
x = Double('x')
z = ops.tanh(x)
graph = GradGraph(z)
graph.getOutput({x: 110.5})
graph.getGradients(wrt=x)
print x.gradient
```

## Testing

```Python
def gradTestSimple():
a = Integer("a")
b = Integer("b")
c = a + b
d = b + 6
e = c * d
graph = GradGraph(e)
graph.getOutput({a: 32,
b: 11})
graph.getGradients(wrt=b)
print a.gradient, b.gradient
```
### Here is a more complex example.
```Python
def gradTest():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
t = y * k
m = k + t
n = m * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
### This is the same examples as above but the commands are not three op commands.

```Python
def gradTestLong():
x = Integer("Int1x")
y = Integer("Int2y")
z = Integer("Int3z")
p = Integer("Int4p")
k = p * z
n = (k + (y * p * z)) * z
graph = GradGraph(n)
graph.getOutput({x: 9,
y: 9,
z: 9,
p: 2})
graph.getGradients(wrt=z)
print x.gradient, y.gradient, z.gradient, p.gradient
```
Tensor Operations
```Python

def dotProduct():
x = DoubleTensor("Tensor1")
y = x.dot([3, 4])
z = y.dot([4, 5])
graph = GradGraph(z)
output = graph.getOutput({x: [3, 4]})
graph.getGradients(wrt=x)
assert(np.all(output == [100, 125]))
assert(np.all(x.gradient == [[ 12., 16.], [ 15., 20.]]))



def TensorOp():
x = DoubleTensor("Tensor1")
y = x - [3, 4]
z = ops.log(y * x)
graph = GradGraph(z)
output = graph.getOutput({x: [10]})
assert(np.all(np.isclose(output, np.log(10 * (10 - np.asarray([3, 4]))))))
graph.getGradients(wrt=x)
a = 2 * 10 - np.asarray([3, 4])
b = 1.0/np.exp(np.asarray(output))
assert(np.all(np.isclose(x.gradient, a * b)))


```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyGrad-1.0.0.tar.gz (6.4 kB view details)

Uploaded Source

File details

Details for the file easyGrad-1.0.0.tar.gz.

File metadata

  • Download URL: easyGrad-1.0.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for easyGrad-1.0.0.tar.gz
Algorithm Hash digest
SHA256 85cce77651587aae25851aa8f2b3654f5f98f8197c427f686e786247ffca7cc1
MD5 1461ba82e8a6e64ebdae601aadaf0941
BLAKE2b-256 9a9935c5846e0942c7a0b82aa100b983bb1ca244c22060d7a9fd09b43d035594

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page