Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)
[![Foo](https://pyup.io/repos/github/i008/easyimages/shield.svg)](https://pyup.io/repos/github/i008/easyimages/)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)



# EasyImageList()


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')
<ImageList with 6 EasyImages>

```





```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```


![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.5.7.tar.gz (96.5 kB view details)

Uploaded Source

Built Distribution

easyimages-0.5.7-py2.py3-none-any.whl (10.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.5.7.tar.gz.

File metadata

  • Download URL: easyimages-0.5.7.tar.gz
  • Upload date:
  • Size: 96.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.5.7.tar.gz
Algorithm Hash digest
SHA256 bc4ed807dc7bb6a6efdcc124c574302c20905b1263200749b12808875e2a3924
MD5 3e0cfdb9439f07bb16077bacedf37c14
BLAKE2b-256 bb272cfae08572004dc4e15c69ed95b402a502425439cac0db8c53b36684ecf6

See more details on using hashes here.

File details

Details for the file easyimages-0.5.7-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.5.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 10.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.5.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0076de24f2a0d7506fd38e7bda37ad40964656ca054ada772ba099bacb1a07f3
MD5 664248e8882d5ef0a7296509ba4095d9
BLAKE2b-256 0154d5bc5b144735a20478f8e631e6cb19f0de48a4b6af889d856ca7f1e6d414

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page