Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)
[![Foo](https://pyup.io/repos/github/i008/easyimages/shield.svg)](https://pyup.io/repos/github/i008/easyimages/)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)



# EasyImageList()


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')
<ImageList with 6 EasyImages>

```





```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```


![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.6.0.tar.gz (174.8 kB view details)

Uploaded Source

Built Distribution

easyimages-0.6.0-py2.py3-none-any.whl (86.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.6.0.tar.gz.

File metadata

  • Download URL: easyimages-0.6.0.tar.gz
  • Upload date:
  • Size: 174.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.6.0.tar.gz
Algorithm Hash digest
SHA256 42e7ad040c69f0e19f9f133e443785b7c45794550e9ed1fee16d8d8afbc320ed
MD5 a282583c4a502b5300c576807d2a61dd
BLAKE2b-256 e6e10b1ace0c51b5018bb7bb3d2dcd8bd6ba0aaaf9ccfd013056ca4522944a2d

See more details on using hashes here.

File details

Details for the file easyimages-0.6.0-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.6.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 86.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.6.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 99752e71b5d6f77152d42621aaa64f167092555aaace3c95e697275675ee6551
MD5 25118563fc088a06321c9d456cf4d1cd
BLAKE2b-256 0a85131c12261741d2a7c326cc05bdb2f26cc6d768f30e7a1bcc11ba456b5b6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page