Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)
[![Foo](https://pyup.io/repos/github/i008/easyimages/shield.svg)](https://pyup.io/repos/github/i008/easyimages/)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)



# EasyImageList()


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')
<ImageList with 6 EasyImages>

```





```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```


![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.6.1.tar.gz (174.8 kB view details)

Uploaded Source

Built Distribution

easyimages-0.6.1-py2.py3-none-any.whl (86.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.6.1.tar.gz.

File metadata

  • Download URL: easyimages-0.6.1.tar.gz
  • Upload date:
  • Size: 174.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.2 requests/2.11.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for easyimages-0.6.1.tar.gz
Algorithm Hash digest
SHA256 fc3fe48b6c679503a91f7e6ac37e275471f012044c5e9e50d1a68aedf69eabd1
MD5 b598c3bd88bbc3f46b215c769b2083ff
BLAKE2b-256 7c6945487643da3f9eac5bd2a6e90f717353f24c232af8538b43de579d4177ba

See more details on using hashes here.

File details

Details for the file easyimages-0.6.1-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.6.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 86.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.2 requests/2.11.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.6

File hashes

Hashes for easyimages-0.6.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e4d79ae913411395c0b5dbd5ded5e274b318ebe20ab3400aed99b101ee0f3f3a
MD5 8ee6a2749e22fb59d4e49d0d9f5c60dc
BLAKE2b-256 72b148a20eb52bd1ed04fa35923a407b4b6de6c89001821117e7df6f94241b4b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page