Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



#### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)
----

#### Initialize EasyImageList in a number of ways:


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')

<ImageList with 6 EasyImages>
```

```python
easy_list = EasyImageList.from_glob('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
easy_list = EasyImageList.from_pil('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```

![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


#### You can switch between classes you visualize with a notebook widget

![png](example/widget.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.7.7.tar.gz (173.8 kB view details)

Uploaded Source

Built Distribution

easyimages-0.7.7-py2.py3-none-any.whl (88.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.7.7.tar.gz.

File metadata

  • Download URL: easyimages-0.7.7.tar.gz
  • Upload date:
  • Size: 173.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.7.7.tar.gz
Algorithm Hash digest
SHA256 bba5a3e63d3fd39ffd4de0e6e9e1297da446cb799b0e93d70019aea0239f22be
MD5 df625ccd13c289a1477e500857adf231
BLAKE2b-256 8022aa7e5644bc9679f837b38a0c12e881ecd69ab022326a182b92f068c02a92

See more details on using hashes here.

File details

Details for the file easyimages-0.7.7-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.7.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.7.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e748dbe5f0241b81b79c207bb84e783a30e79a391548ef1ec13f269aeee90b06
MD5 ccb7586d679d82e13f1ab0bf0e063723
BLAKE2b-256 c869ca1193926a46daf3be2fbb605a7b84e77a20b6ef4f8e0be3618bd477cbb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page