Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



#### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)
----

#### Initialize EasyImageList in a number of ways:


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')

<ImageList with 6 EasyImages>
```

```python
easy_list = EasyImageList.from_glob('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
easy_list = EasyImageList.from_pil('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```

![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


#### You can switch between classes you visualize with a notebook widget

![png](example/widget.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.8.2.tar.gz (175.1 kB view details)

Uploaded Source

Built Distribution

easyimages-0.8.2-py2.py3-none-any.whl (89.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.8.2.tar.gz.

File metadata

  • Download URL: easyimages-0.8.2.tar.gz
  • Upload date:
  • Size: 175.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.8.2.tar.gz
Algorithm Hash digest
SHA256 861035094b8c26aae6ccc67bf6e083ea3cf63087eaf004adff200818cec4b1d8
MD5 d505616b07bcbfec46e7c472aee85f00
BLAKE2b-256 1b6f5a39b05c76a50f69b45ec6c6f94956ce05aa9e4a3272e736608376a88e4c

See more details on using hashes here.

File details

Details for the file easyimages-0.8.2-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.8.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.8.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 07fa4cf81ce9277b9d074c98e6f237bc67010a530d7e6af84267a8879ea2e55f
MD5 b1856473545e051e84e040fc8638c836
BLAKE2b-256 2e7f0b67eac5d728628ac73d0f37dacbdd6bb1789d5afbacc4c8da077674cd5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page