Skip to main content

Images made easy

Project description


# easyimages

[![Foo](https://img.shields.io/pypi/v/easyimages.svg)](https://pypi.python.org/pypi/easyimages)
[![Foo](https://img.shields.io/travis/i008/easyimages.svg)](https://travis-ci.org/i008/easyimages)
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)


# Info

This small but handy package solves several issues i had while working with images and image datasets - especially in the context
of exploring datsets, inspecting and shareing the results.
Keep in mind that his package is not directly related to the training process and loading
image data, for that i found pytorch dataloading patterns to work very well.

# Installation
```bash
pip install easyimages
```


Features
--------
- Simple API
- Easy image exploration
- Inteligent behaviour based on execution context (terminal, jupyter etc)
- Lazy evaluation
- Loading images from many different sources (filesystem, pytorch, numpy, web-urls, etc)
- Storing annotations (tags, bounding boxes) allong the image in the same object
- Visualizing labels (drawing boxes and drawing the label onto the image)
- Visualizing images as Grids (ImagesLists)
- Visualizing huge amounts of images at once (by leveraging fast html rendering)
- Displaying images while working in jupyter notebook
- Displaying images inline in console mode (iterm)



Examples
--------

For detailed examples check the examples notebook





```python
from easyimages import EasyImage, EasyImageList, bbox
import torch
import torchvision
from torchvision import transforms
import PIL
```

# EasyImage


#### image from file


```python
# in this context lazy means the object will store the metadata only and will not open the file just yet
image1 = EasyImage.from_file('./tests/test_data/image_folder/img_00000002.jpg',label=['Person'], lazy=True)
image1.show()
```

EasyImageObject: img_00000002.jpg | labels: ['Person'] | downloaded: True | size: (205, 300) |





![png](example/output_2_1.png)



#### image from file in CLI (iterm only) :

![png](example/easy_cli.png)

#### image from url



```python
image2 = EasyImage.from_url('https://imgur.com/KDBRjyv.png')
image2.show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (237, 212) |





![png](example/output_4_1.png)



#### image from torch-like


```python
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]

Trans = torchvision.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
torch_image = Trans(PIL.Image.open('./tests/test_data/image_folder/img_00000003.jpg'))


image3 = EasyImage.from_torch(torch_image, mean=MEAN, std=STD)
image3.show()
```

EasyImageObject: ef807dcc.jpg | labels: [] | downloaded: True | size: (170, 250) |


![png](example/output_6_1.png)



#### Draw label on image


```python
image2.boxes = [bbox(10, 10, 50, 50, 1, 'class_1'),
bbox(50, 50, 100, 100, 1, 'class_2')]
image2.draw_boxes().show()
```

EasyImageObject: KDBRjyv.png | labels: [] | downloaded: True | size: (324, 291) |



![png](example/output_8_1.png)
----

#### Initialize EasyImageList in a number of ways:


```python
easy_list = EasyImageList.from_multilevel_folder('./tests/test_data/hierarchy_images/')

<ImageList with 6 EasyImages>
```

```python
easy_list = EasyImageList.from_glob('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
easy_list = EasyImageList.from_pil('tests/test_data/image_folder/*.jpg')

<ImageList with 3 EasyImages>
```

```python
# sometimes its handy to have a numpy array like image
r = easy_list.visualize_grid_numpy(montage_shape=(3,2))
```

![png](example/output_12_0.png)


#### visualize a big dataset

![png](example/vis.png)


#### You can switch between classes you visualize with a notebook widget

![png](example/widget.png)


=======
History
=======

0.1.0 (2018-08-24)
------------------

* First release on PyPI.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyimages-0.8.3.tar.gz (175.1 kB view details)

Uploaded Source

Built Distribution

easyimages-0.8.3-py2.py3-none-any.whl (89.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file easyimages-0.8.3.tar.gz.

File metadata

  • Download URL: easyimages-0.8.3.tar.gz
  • Upload date:
  • Size: 175.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.8.3.tar.gz
Algorithm Hash digest
SHA256 f3b7124bf232f51c36cffe6eb9bb230f805a1caec887f07da488686c714477f5
MD5 f937b5d4dadfad146c60fdbd5796dbb4
BLAKE2b-256 fd59c055332a735aa77475608a054be200faa846392cd9e21270f519cf4814a2

See more details on using hashes here.

File details

Details for the file easyimages-0.8.3-py2.py3-none-any.whl.

File metadata

  • Download URL: easyimages-0.8.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.10.0 pkginfo/1.4.1 requests/2.11.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for easyimages-0.8.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 761cdd23aa1d6e5aa6be6fd013d49f30b9ab250dfe1e036beb0a6fbc57815337
MD5 796de229fa702074880871b4f5522fc8
BLAKE2b-256 44d940351db0c9d26fedb2f4757285a7b8f7f74c9002a9453f35d8cb3de587c9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page