Skip to main content

Easy to use State Reversible Vampnet with fit, transform and fittransform methods

Project description

Easy State Reversible Vampnet

This is an package providign State Reversible Vampnet from the J. Chem. Phys. 150, 214114 (2019). This is a deep dimensionality reduction used for time series to extract low dimensional slow process description. Usually it is used as an pre-processing tool to build Markov State Model to reduce number of dimensions in the system.

Installation

At the moment installation is available through github and pypi

github:

git clone https://github.com/DanielWicz/easysrv
cd easysrv
pip install .

PyPi

pip install easysrv

Usage

To use it you need two things

  1. Your data as an list of numpy arrays. Where each element of the list is an numpy array of shape (time_series_length, number_of_dims).
  2. Tensorflow 2 Sequence Model
import tensorflow as tf


# use smooth activation, to have smooth slow process assigment
# use non-smooth activation (relu, lerelu etc.) to have non-smooth slow process assigment
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(100, kernel_regularizer=tf.keras.regularizers.L2(0.0001), kernel_initializer='lecun_normal'),
    tf.keras.layers.Activation("swish"),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(100, kernel_regularizer=tf.keras.regularizers.L2(0.0001), kernel_initializer='lecun_normal'),
    tf.keras.layers.Activation("swish"),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(2, kernel_regularizer=tf.keras.regularizers.L2(0.0001)),
    tf.keras.layers.GaussianNoise(1)])
# assume that list with data are described as a variable features
# pass single datapoint to set shapes of the matrices
model(features[0])

# initialize optimizer
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

# initialize SRV, epochs - number of training iterations, split - train:validation split
srv = SRV(model=model, optimizer=optimizer, epochs=20, lagtime=1, split=0.05)

# fit SRV model
history = srv.fit(features)

# depict training process
plt.plot(history['Training loss'])
plt.title("Training loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")

plt.plot(history['Val Training loss'])
plt.title("Validation Training loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")

plt.plot(history['VAMP2 valid score'])
plt.title("Validation VAMP2")
plt.xlabel("Epochs")
plt.ylabel("VAMP2 score")

modes = ["IC{}".format(i+1) for i in range(len(history['eigenvalues']))]
plt.bar(modes, history['eigenvalues'])
plt.title("Slow processses eigenvalues")

# transform relevant features onto slow processes
# remove_modes allows for removing not interesting slow processes from slowest to the fastest
model_out = svr.transform(features, remove_modes=[])

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easysrv-0.0.3.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

easysrv-0.0.3-py3-none-any.whl (9.3 kB view details)

Uploaded Python 3

File details

Details for the file easysrv-0.0.3.tar.gz.

File metadata

  • Download URL: easysrv-0.0.3.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for easysrv-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c284cef3fbdc210f8bdf21fb94fb59707b19b648090c5095e786dd2af1fd99c3
MD5 8cb8349c517317250c4224a562a699cf
BLAKE2b-256 734c336a52f89f0fe50d57caecf33941767bf46084a8d2e1942f48628f08bfe8

See more details on using hashes here.

File details

Details for the file easysrv-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: easysrv-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 9.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for easysrv-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 eec4cbf3d90131f6d1ca217c1e35822d6cf0a83ad4e8316067b74dcd6bf7679b
MD5 72ed49296ebb27f68f5e8dc8123a746f
BLAKE2b-256 c7b6ecd5a886361d75d077701cfe06c613c85c47f910fac9eae96ac64e0dd6f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page