Skip to main content

The official python cient of EasyTensor

Project description

EasyTensor

The official python client for EasyTensor.

Installation

Pretty straightforward.

pip install easytensor

Usage

Once you have a model exported to your local storage, you can upload it to easytensor in one line of code.

TensorFlow

Exporting and uploading a model

import easytensor
import os
export_path = os.path.join(os.getcwd(), "my_model")
print("export_path: {}".format(export_path))

# Export the model
tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

# Upload it to easytensor.
model_id, access_token = easytensor.tensorflow.upload_model("My first model", export_path)
print("model ID:", model_id)
print("access token:", access_token)

Running prediction on the cloud

from pprint import pprint
import requests
response = requests.post(
    "https://app.easytensor.com/query/",
    json={
        "instances": [
            image_to_predict.numpy().tolist()
        ]
    },
    headers={"accessToken": access_token}
)
print("Response from server:")
pprint(response.json())

Examples

The library comes with a few example Jupyter notebooks that walk you through a few possible workflows. They are helpful if you are starting out with ML or remote model prediction.

Requirements

For Mac
brew install python@3.8
For Ubuntu
sudo apt install python3.8 python3.8-dev

To run the examples, create a python virtual env, and install jupyter notebook.

# install virtualenv
pip3 install virtualenv

# create a virtualenv with python3.8 in ~/virtualenv-3.8
virtualenv --python=$(which python3.8) ~/virtualenv-3.8

# activate the virtual env
source ~/virtualenv-3.8/bin/activate

# install jupyter notebook and necessary widgets
pip install notebook ipywidgets

# run jupyter notebook
jupyter notebook

Questions and Help

If you have any querstions about how EasyTensor works or want help with serving your ML model, please contact me directly at kamal@easytensor.com. I'm here to help!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easytensor-0.0.8.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

easytensor-0.0.8-py3-none-any.whl (13.5 kB view details)

Uploaded Python 3

File details

Details for the file easytensor-0.0.8.tar.gz.

File metadata

  • Download URL: easytensor-0.0.8.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for easytensor-0.0.8.tar.gz
Algorithm Hash digest
SHA256 0cab19326760c7307029424d116cf110cac284ad2c72fdc7e6fd8a0e2dae41b8
MD5 79bd78e39e13d5bb6f17a15dbf7f5007
BLAKE2b-256 fd49ed8a2ecea32d400033f47f5039d800413154c3a734cd4601b04286e4bc74

See more details on using hashes here.

File details

Details for the file easytensor-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: easytensor-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 13.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.8

File hashes

Hashes for easytensor-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 0117c255566755f9e1d31433539003fcc59be2de13427de56b9232e917d91cd6
MD5 f5399b6c31336b3e44c62ae3f81cd164
BLAKE2b-256 0624e6d26e2f97a75ffc6a9245797ed79a6237cf2e0c44982187f8252e86c2b0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page