Skip to main content

Library to facilitate simple Verification, Validation and Uncertainty Quantification of simulation codes

Project description

EasyVVUQ icon

EasyVVUQ

Language grade: Python Documentation Status Coverage Status CII Best Practices Binder

The aim of EasyVVUQ is to facilitate verification, validation and uncertainty quantification (VVUQ) for a wide variety of simulations. While very convenient for simple cases, EasyVVUQ is particularly well suited in situations where the simulations are computationally expensive, heterogeneous computing resources are necessary, the sampling space is very large or book-keeping is prohibitively complex. It coordinates execution using an efficient database, it is fault tolerant and all progress can be saved.

Here are some examples of questions EasyVVUQ can answer about your code:

  • Given the uncertainties in input parameters, what is the distribution of the output?
  • What percentage of the output variance each input parameter contributes?

It also lets you construct surrogate models that are cheaper to evaluate than the complete simulation.

The high-level overview of the library is avalable at our readthedocs.

Getting Started

For the quick start with EasyVVUQ we reccommend to check our basic interactive tutorial available here.

Functionality

Available analysis and sampling methods:

  • Polynomial Chaos Expansion
  • Stochastic Collocation
  • Dimension-adaptive Stochastic Collocation for high-dimensional inputs
  • Simplex Stochastic Collocation for irregular outputs
  • Monte Carlo Sensitivity Analysis
  • Markov-Chain Monte Carlo

EasyVVUQ also supports building surrogate models using:

  • Polynomial Chaos Expansion
  • Stochastic Collocation
  • Gaussian Processes

Supported computing resources:

  • Traditional clusters
  • Kubernetes clusters

The easiest way to get familiar with the provided functionality is to follow the tutorials (*.ipynb files) in our Binder.

Installation instructions

Requirements

To use the library you will need Python 3.7+.

Installation using pip

If you are unsure of the version of python your default pip works for type:

pip --version

If the output ends with (python 2.7) you should replace pip with pip3 in the following commands.

The following should fully install the library:

pip install easyvvuq

To upgrade the library use:

pip install easyvvuq --upgrade

Manual installation from repository

Alternatively, you can manually install EasyVVUQ. First clone the repository to your computer:

git clone https://github.com/UCL-CCS/EasyVVUQ.git

Note: As above, you need to be sure you are installing for Python 3 - if necessary replace pip with pip3 and python with python3 in the commands below.

We are trying to keep dependencies at a minimum but a few are inevitable, to install them use:

cd EasyVVUQ/

pip install --use-feature=2020-resolver -r requirements.txt

Then the library can be installed using:

python setup.py install

API

You can find the EasyVVUQ API documentation on our GitHub Pages.

Citing EasyVVUQ

Richardson, R A, Wright, D W, Edeling, W, Jancauskas, V, Lakhlili, J and Coveney, P V. 2020 EasyVVUQ: A Library for Verification, Validation and Uncertainty Quantification in High Performance Computing. Journal of Open Research Software, 8: 11. DOI: 10.5334/jors.303.

Wright, D.W., Richardson, R.A., Edeling, W., Lakhlili, J., Sinclair, R.C., Jancauskas, V., Suleimenova, D., Bosak, B., Kulczewski, M., Piontek, T., Kopta, P., Chirca, I., Arabnejad, H., Luk, O.O., Hoenen, O., Weglarz, J., Crommelin, D., Groen, D. and Coveney, P.V. (2020), Building Confidence in Simulation: Applications of EasyVVUQ. Adv. Theory Simul., 3: 1900246. DOI: 10.1002/adts.201900246.

Acknowledgments

Development was funded by the EU Horizon 2020 project VECMA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

easyvvuq-1.2.tar.gz (167.8 kB view details)

Uploaded Source

Built Distribution

easyvvuq-1.2-py3-none-any.whl (225.5 kB view details)

Uploaded Python 3

File details

Details for the file easyvvuq-1.2.tar.gz.

File metadata

  • Download URL: easyvvuq-1.2.tar.gz
  • Upload date:
  • Size: 167.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for easyvvuq-1.2.tar.gz
Algorithm Hash digest
SHA256 a69ae98ad43d3ea52a776a04aca8b252d5919030a88e22b0c7a494f10826d383
MD5 612cde54e608c8ebc8a9c759a15891c4
BLAKE2b-256 e1c2e598d3580f401b16eafecc8adbfdb1a0616af59d1ee5b07b38253fa740dc

See more details on using hashes here.

File details

Details for the file easyvvuq-1.2-py3-none-any.whl.

File metadata

  • Download URL: easyvvuq-1.2-py3-none-any.whl
  • Upload date:
  • Size: 225.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for easyvvuq-1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 647814b7d78d700be17cb9d67608a7f0c16e28c7962197a9cfdc6f7363cf25ed
MD5 37785ff31ce810448d55e4e34479ceeb
BLAKE2b-256 705719870250a6bfd90c46463cf48260fab43eb6977da16c7882b3dd29241aba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page