Skip to main content

A scraper to library to scrape .docx files with 'Entscheidungsbaumdiagramm' tables into a truely machine readable structure

Project description

ebdamame

License: MIT Python Versions (officially) supported Unittests status badge Coverage status badge Linting status badge Formatting status badge PyPi Status Badge

🇩🇪 Dieses Repository enthält ein Python-Paket namens ebdamame (früher: ebddocx2table), das genutzt werden kann, um aus .docx-Dateien maschinenlesbare Tabellen, die einen Entscheidungsbaum (EBD) modellieren, zu extrahieren (scrapen). Diese Entscheidungsbäume sind Teil eines regulatorischen Regelwerks für die deutsche Energiewirtschaft und kommen in der Eingangsprüfung der Marktkommunikation zum Einsatz. Die mit diesem Paket erstellten maschinenlesbaren Tabellen können mit rebdhuhn (früher: ebdtable2graph) in echte Graphen und Diagramme umgewandelt werden. Exemplarische Ergebnisse des Scrapings finden sich als .json-Dateien im Repository machine-readable_entscheidungsbaumdiagramme.

🇬🇧 This repository contains the source code of the Python package ebdamame (formerly published as ebddocx2table).

Rationale

Assume that you want to analyse or visualize the Entscheidungsbaumdiagramme (EBD) by EDI@Energy. The website edi-energy.de, as always, only provides you with PDF or Word files instead of really digitized data.

The package ebdamame scrapes the .docx files and returns data in a model defined in the "sister" package rebdhuhn (formerly known as ebdtable2graph).

Once you scraped the data (using this package) you can plot it with rebdhuhn.

How to use the package

In any case, install the repo from PyPI:

pip install ebdamame

Use as a library

import json
from pathlib import Path

import cattrs

from ebdamame import TableNotFoundError, get_all_ebd_keys, get_ebd_docx_tables  # type:ignore[import]
from ebdamame.docxtableconverter import DocxTableConverter  # type:ignore[import]

docx_file_path = Path("unittests/test_data/ebd20230629_v34.docx")
# download this .docx File from edi-energy.de or find it in the unittests of this repository.
# https://github.com/Hochfrequenz/ebddocx2table/blob/main/unittests/test_data/ebd20230629_v34.docx
docx_tables = get_ebd_docx_tables(docx_file_path, ebd_key="E_0003")
converter = DocxTableConverter(
    docx_tables,
    ebd_key="E_0003",
    chapter="MaBiS",
    sub_chapter="7.42.1: AD: Bestellung der Aggregationsebene der Bilanzkreissummenzeitreihe auf Ebene der Regelzone",
)
result = converter.convert_docx_tables_to_ebd_table()
with open(Path("E_0003.json"), "w+", encoding="utf-8") as result_file:
    # the result file can be found here:
    # https://github.com/Hochfrequenz/machine-readable_entscheidungsbaumdiagramme/tree/main/FV2310
    json.dump(cattrs.unstructure(result), result_file, ensure_ascii=False, indent=2, sort_keys=True)

Use as a CLI tool

to be written

How to use this Repository on Your Machine (for development)

Please follow the instructions in our Python Template Repository. And for further information, see the Tox Repository.

Contribute

You are very welcome to contribute to this template repository by opening a pull request against the main branch.

Related Tools and Context

This repository is part of the Hochfrequenz Libraries and Tools for a truly digitized market communication.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebdamame-0.2.1.tar.gz (29.8 kB view details)

Uploaded Source

Built Distribution

ebdamame-0.2.1-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file ebdamame-0.2.1.tar.gz.

File metadata

  • Download URL: ebdamame-0.2.1.tar.gz
  • Upload date:
  • Size: 29.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ebdamame-0.2.1.tar.gz
Algorithm Hash digest
SHA256 23e02b891282dcab08fa7f514fd9057b1b182d54360cb5aad87333bb2051f779
MD5 81ebb43c9764f425423672c6d83e0c31
BLAKE2b-256 05fcf98c8f44134705e66cc259be4193223ab57d59a55c947d2ccc9e66c36d31

See more details on using hashes here.

File details

Details for the file ebdamame-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: ebdamame-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for ebdamame-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e9cf150cc5c7dfb5872ddaf1dac648e8761f749e8ed6d38ff24a523f263a7360
MD5 cf74cfe7eb014119355dfe032e5e7936
BLAKE2b-256 bf8e8b5a9c98c6d9573fc57167ff4f4ff77fd1c684376770c1319ef64dee55a6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page