Skip to main content

An event based dataset loader under one common API.

Project description

ebdataset

An event based dataset loader under one common python (>=3.5) API built on top of numpy record arrays for sparse representation and PyTorch for dense representation.

Supported datasets

  1. Neuromorphic Mnist dataset from Orchard, G.; Cohen, G.; Jayawant, A.; and Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades", Frontiers in Neuroscience, vol.9, no.437, Oct. 2015. Available for download at https://www.garrickorchard.com/datasets/n-mnist

  2. NCaltech101 dataset from Orchard, G.; Cohen, G.; Jayawant, A.; and Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades", Frontiers in Neuroscience, vol.9, no.437, Oct. 2015. Available for download at https://www.garrickorchard.com/datasets/n-caltech101

  3. IBM DVS128 Gesture dataset from A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, "A Low Power, Fully Event-Based Gesture Recognition System," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017. Available for download at http://research.ibm.com/dvsgesture/

  4. INI Roshambo17 dataset from I.-A. Lungu, F. Corradi, and T. Delbruck, Live Demonstration: Convolutional Neural Network Driven by Dynamic Vision Sensor Playing RoShamBo, in 2017 IEEE Symposium on Circuits and Systems (ISCAS 2017), Baltimore, MD, USA, 2017. Available for download at https://drive.google.com/file/d/0BzvXOhBHjRheYjNWZGYtNFpVRkU/view?usp=sharing

  5. INI UCF-50 dataset from: Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS Benchmark Datasets for Object Tracking, Action Recognition and Object Recognition. Front. Neurosci. 10, 405. doi:10.3389/fnins.2016.00405. Available for download at https://dgyblog.com/projects-term/dvs-dataset.html

  6. NTidigits dataset from: Anumula, Jithendar, et al. “Feature Representations for Neuromorphic Audio Spike Streams.” Frontiers in Neuroscience, vol. 12, Feb. 2018, p. 23. DOI.org (Crossref), doi:10.3389/fnins.2018.00023. Available for download at https://docs.google.com/document/d/1Uxe7GsKKXcy6SlDUX4hoJVAC0-UkH-8kr5UXp0Ndi1M

  7. Prophesee N-Cars dataset from: Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, Ryad Benosman “HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object Classification”. To appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. Available for download at https://www.prophesee.ai/2018/03/13/dataset-n-cars/

Installation

You can install the latest version of this package with:

pip install ebdataset

Getting started

In the code:

from ebdataset.vision import NMnist
from ebdataset.vision.transforms import ToDense
from quantities import ms

# With sparse representation:
for spike_train, label in NMnist(path):
    spike_train.x, spike_train.y, spike_train.p, spike_train.ts
    break

# Or use the pytorch transforms API for dense tensors
dt = 1*ms
loader = NMnist(path, is_train=True, transforms=ToDense(dt))
for spike_train, label in loader:
    spike_train.shape # => (34, 34, 2, duration of sample)
    break

Or with the visualization sub-package:

python -m ebdataset.visualization.spike_train_to_vid NMnist path

Contributing

Feel free to create a pull request if you're interested in this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebdataset-0.0.2.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

ebdataset-0.0.2-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file ebdataset-0.0.2.tar.gz.

File metadata

  • Download URL: ebdataset-0.0.2.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for ebdataset-0.0.2.tar.gz
Algorithm Hash digest
SHA256 d40dda089c7a9657eb11aa9d8d3e9eadf916fab0e956bdebcd68c47d82787076
MD5 2fd3653a9d62069660bfe6014ae778dc
BLAKE2b-256 b4f008e07c3b2b85339c94ad3f1176d95e8c51a96cb393627e6de53fb602711e

See more details on using hashes here.

File details

Details for the file ebdataset-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: ebdataset-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for ebdataset-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 30830cc4ef8f93bff41bd3d16c9a95a1a098b96581994a983cccd78c6938acfa
MD5 d1d92f5dcb85d2b7432605dcc7cacb84
BLAKE2b-256 dee4d876328a61382d6bc4a38813066ca4dfceaba0e3e88833eb119133179565

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page