Skip to main content

An event based dataset loader under one common API.

Project description

ebdataset

An event based dataset loader under one common python (>=3.5) API built on top of numpy record arrays for sparse representation and PyTorch for dense representation.

Supported datasets

  1. Neuromorphic Mnist dataset from Orchard, G.; Cohen, G.; Jayawant, A.; and Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades", Frontiers in Neuroscience, vol.9, no.437, Oct. 2015. Available for download at https://www.garrickorchard.com/datasets/n-mnist

  2. NCaltech101 dataset from Orchard, G.; Cohen, G.; Jayawant, A.; and Thakor, N. “Converting Static Image Datasets to Spiking Neuromorphic Datasets Using Saccades", Frontiers in Neuroscience, vol.9, no.437, Oct. 2015. Available for download at https://www.garrickorchard.com/datasets/n-caltech101

  3. IBM DVS128 Gesture dataset from A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, "A Low Power, Fully Event-Based Gesture Recognition System," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017. Available for download at http://research.ibm.com/dvsgesture/

  4. INI Roshambo17 dataset from I.-A. Lungu, F. Corradi, and T. Delbruck, Live Demonstration: Convolutional Neural Network Driven by Dynamic Vision Sensor Playing RoShamBo, in 2017 IEEE Symposium on Circuits and Systems (ISCAS 2017), Baltimore, MD, USA, 2017. Available for download at https://drive.google.com/file/d/0BzvXOhBHjRheYjNWZGYtNFpVRkU/view?usp=sharing

  5. INI UCF-50 dataset from: Hu, Y., Liu, H., Pfeiffer, M., and Delbruck, T. (2016). DVS Benchmark Datasets for Object Tracking, Action Recognition and Object Recognition. Front. Neurosci. 10, 405. doi:10.3389/fnins.2016.00405. Available for download at https://dgyblog.com/projects-term/dvs-dataset.html

  6. NTidigits dataset from: Anumula, Jithendar, et al. “Feature Representations for Neuromorphic Audio Spike Streams.” Frontiers in Neuroscience, vol. 12, Feb. 2018, p. 23. DOI.org (Crossref), doi:10.3389/fnins.2018.00023. Available for download at https://docs.google.com/document/d/1Uxe7GsKKXcy6SlDUX4hoJVAC0-UkH-8kr5UXp0Ndi1M

  7. Prophesee N-Cars dataset from: Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, Ryad Benosman “HATS: Histograms of Averaged Time Surfaces for Robust Event-based Object Classification”. To appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. Available for download at https://www.prophesee.ai/2018/03/13/dataset-n-cars/

Installation

You can install the latest version of this package with:

pip install ebdataset

Getting started

In the code:

from ebdataset.vision import NMnist
from ebdataset.vision.transforms import ToDense
from ebdataset import ms

# With sparse representation:
for spike_train, label in NMnist(path):
    spike_train.x, spike_train.y, spike_train.p, spike_train.ts
    break

# Or use the pytorch transforms API for dense tensors
dt = 1*ms
loader = NMnist(path, is_train=True, transforms=ToDense(dt))
for spike_train, label in loader:
    spike_train.shape # => (34, 34, 2, duration of sample)
    break

Or with the visualization sub-package:

python -m ebdataset.visualization.spike_train_to_vid NMnist path

Contributing

Feel free to create a pull request if you're interested in this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebdataset-0.1.0.tar.gz (19.3 kB view details)

Uploaded Source

Built Distribution

ebdataset-0.1.0-py3-none-any.whl (25.7 kB view details)

Uploaded Python 3

File details

Details for the file ebdataset-0.1.0.tar.gz.

File metadata

  • Download URL: ebdataset-0.1.0.tar.gz
  • Upload date:
  • Size: 19.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for ebdataset-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4dfdb976e56669f71d0296c457119bb92370cd831731491288e8b8a87b543b77
MD5 0e13a4fffeac79d6a198b3e6c0dbd9c0
BLAKE2b-256 88c77f3cfc2f4f1feaed6000de303594d7ce14755baaa334b305ea258986ca83

See more details on using hashes here.

File details

Details for the file ebdataset-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: ebdataset-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 25.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for ebdataset-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2dc6161f8d51c40a6b7a557eecc563f533ed5f278cfa7403f16f2e54e51ca69e
MD5 889e60f53edfdbe86f01fd37af3f3119
BLAKE2b-256 fa55f6fc7b5c912f81b619b4e5bfc1a1ee177f4ae8928b621e34925ecd70185c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page