A scraper to library to scrape .docx files with 'Entscheidungsbaumdiagramm' tables into a truely machine readable structure
Project description
ebddocx2table
[!IMPORTANT] ⚠ This is the last version using the name
ebddocx2table
. Both the repository and the Python package will be renamed toebdamame
.
🇩🇪 Dieses Repository enthält ein Python-Paket namens ebddocx2table
, das genutzt werden kann, um aus .docx-Dateien maschinenlesbare Tabellen, die einen Entscheidungsbaum (EBD) modellieren, zu extrahieren (scrapen).
Diese Entscheidungsbäume sind Teil eines regulatorischen Regelwerks für die deutsche Energiewirtschaft und kommen in der Eingangsprüfung der Marktkommunikation zum Einsatz.
Die mit diesem Paket erstellten maschinenlesbaren Tabellen können mit ebdtable2graph
in echte Graphen und Diagramme umgewandelt werden.
Exemplarische Ergebnisse des Scrapings finden sich als .json-Dateien im Repository machine-readable_entscheidungsbaumdiagramme
.
🇬🇧 This repository contains the source code of the Python package ebddocx2table
.
Rationale
Assume, that you want to analyse or visualize the Entscheidungsbaumdiagramme (EBD) by EDI@Energy. The website edi-energy.de, as always, only provides you with PDF or Word files instead of really digitized data.
The package ebddocx2table
scrapes the .docx
files and returns data in a model defined in the "sister" package ebdtable2graph
.
Once you scraped the data (using this package) you can plot it with ebdtable2graph
.
How to use the package
In any case, install the repo from PyPI:
pip install ebddocx2table
Use as a library
import json
from pathlib import Path
import cattrs
from ebddocx2table import TableNotFoundError, get_all_ebd_keys, get_ebd_docx_tables # type:ignore[import]
from ebddocx2table.docxtableconverter import DocxTableConverter # type:ignore[import]
docx_file_path = Path("unittests/test_data/ebd20230629_v34.docx")
# download this .docx File from edi-energy.de or find it in the unittests of this repository.
# https://github.com/Hochfrequenz/ebddocx2table/blob/main/unittests/test_data/ebd20230629_v34.docx
docx_tables = get_ebd_docx_tables(docx_file_path, ebd_key="E_0003")
converter = DocxTableConverter(
docx_tables,
ebd_key="E_0003",
chapter="MaBiS",
sub_chapter="7.42.1: AD: Bestellung der Aggregationsebene der Bilanzkreissummenzeitreihe auf Ebene der Regelzone",
)
result = converter.convert_docx_tables_to_ebd_table()
with open(Path("E_0003.json"), "w+", encoding="utf-8") as result_file:
# the result file can be found here:
# https://github.com/Hochfrequenz/machine-readable_entscheidungsbaumdiagramme/tree/main/FV2310
json.dump(cattrs.unstructure(result), result_file, ensure_ascii=False, indent=2, sort_keys=True)
Use as a CLI tool
to be written
How to use this Repository on Your Machine (for development)
Please follow the instructions in our Python Template Repository. And for further information, see the Tox Repository.
Contribute
You are very welcome to contribute to this template repository by opening a pull request against the main branch.
Related Tools and Context
This repository is part of the Hochfrequenz Libraries and Tools for a truly digitized market communication.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for ebddocx2table-0.0.9-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27e1d38fd4afc842e09455b728dcd87a5a512cc018eea22e53dfc177beabda77 |
|
MD5 | 3b3088fcfd172be7c57cb3a23a93f9f3 |
|
BLAKE2b-256 | 0389082aa1d11838224687df8112b773bda1753cd3a204eb126c855423b615b5 |