Skip to main content

EBM model serialization to ONNX

Project description

Ebm2onnx

https://img.shields.io/pypi/v/ebm2onnx.svg CI Code Coverage Documentation Status https://mybinder.org/badge_logo.svg

Ebm2onnx is an EBM model serialization to ONNX. It allows to run an EBM model on any ONNX compliant runtime.

Features

  • Binary classification

  • Regression

  • Continuous variables

  • Categorical variables

  • Interactions

  • Multi-class classification (support is still experimental in EBM)

The export of the models is tested against ONNX Runtime.

Get Started

Train an EBM model:

# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()

feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)

# train an EBM model
model = ExplainableBoostingClassifier(
    feature_types=['continuous', 'continuous', 'continuous','categorical'],
)
model.fit(x_train, y_train)

Then you can convert it to ONNX in a single function call:

import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    dtype={
        'Age': 'double',
        'Fare': 'double',
        'Pclass': 'int',
    }
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

History

0.0.0 (2021-03-09)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebm2onnx-1.0.0.tar.gz (8.6 kB view details)

Uploaded Source

File details

Details for the file ebm2onnx-1.0.0.tar.gz.

File metadata

  • Download URL: ebm2onnx-1.0.0.tar.gz
  • Upload date:
  • Size: 8.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for ebm2onnx-1.0.0.tar.gz
Algorithm Hash digest
SHA256 4e2f103dc7c77833acb1d8a86efdafddf9eb12b3fa6db8152edcf9b2cb46b99a
MD5 e4e29f8f03482cc8a352458d67564fb0
BLAKE2b-256 25ac7bec83755c055eb484e4a7381ae2704147dc2bf755a17aea95f1b3fd40f8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page