Skip to main content

EBM model serialization to ONNX

Project description

https://img.shields.io/pypi/v/ebm2onnx.svg CI Code Coverage Documentation Status https://mybinder.org/badge_logo.svg

Ebm2onnx is an EBM model serialization to ONNX. It allows to run an EBM model on any ONNX compliant runtime.

Features

  • Binary classification

  • Regression

  • Continuous variables

  • Categorical variables

  • Interactions

  • Multi-class classification (support is still experimental in EBM)

The export of the models is tested against ONNX Runtime.

Get Started

Train an EBM model:

# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()

feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)

# train an EBM model
model = ExplainableBoostingClassifier(
    feature_types=['continuous', 'continuous', 'continuous','categorical'],
)
model.fit(x_train, y_train)

Then you can convert it to ONNX in a single function call:

import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    dtype={
        'Age': 'double',
        'Fare': 'double',
        'Pclass': 'int',
    }
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebm2onnx-1.0.2.tar.gz (8.4 kB view details)

Uploaded Source

File details

Details for the file ebm2onnx-1.0.2.tar.gz.

File metadata

  • Download URL: ebm2onnx-1.0.2.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for ebm2onnx-1.0.2.tar.gz
Algorithm Hash digest
SHA256 5c6b9fc23ea023a32a38429791fd682511048b02945f6cbf5eba56a71ca62869
MD5 369d7b8fc9a875ca669f90376082e445
BLAKE2b-256 d246b3a72276e6a1111b2c2eb0e2b574df7d7f0d88b35423d014c368913e4c4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page