Skip to main content

EBM model serialization to ONNX

Project description

https://img.shields.io/pypi/v/ebm2onnx.svg CI Code Coverage Documentation Status https://mybinder.org/badge_logo.svg

Ebm2onnx converts EBM models to ONNX. It allows to run an EBM model on any ONNX compliant runtime.

Features

  • Binary classification

  • Regression

  • Continuous variables

  • Categorical variables

  • Interactions

  • Multi-class classification (support is still experimental in EBM)

  • Expose local explanations

The export of the models is tested against ONNX Runtime.

Get Started

Train an EBM model:

# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()

feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)

# train an EBM model
model = ExplainableBoostingClassifier(
    feature_types=['continuous', 'continuous', 'continuous','categorical'],
)
model.fit(x_train, y_train)

Then you can convert it to ONNX in a single function call:

import onnx
import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    ebm2onnx.get_dtype_from_pandas(x_train),
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

If your dataset is not a pandas dataframe, you can provide the features’ types directly:

import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    dtype={
        'Age': 'double',
        'Fare': 'double',
        'Pclass': 'int',
    }
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

Try it live

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebm2onnx-1.2.0.tar.gz (9.8 kB view details)

Uploaded Source

File details

Details for the file ebm2onnx-1.2.0.tar.gz.

File metadata

  • Download URL: ebm2onnx-1.2.0.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for ebm2onnx-1.2.0.tar.gz
Algorithm Hash digest
SHA256 099f79676ec86d255c55cbaad1c9e1ad8435b5962cca6965bf0155790e228ed2
MD5 2dc3a59b1757023e900a581ceb198b81
BLAKE2b-256 559f3d7a6525ec449af0689c8282d3e7dcfd07233d8c789174f519003aff44d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page