Skip to main content

EBM model serialization to ONNX

Project description

https://img.shields.io/pypi/v/ebm2onnx.svg CI Code Coverage Documentation Status https://mybinder.org/badge_logo.svg

Ebm2onnx converts EBM models to ONNX. It allows to run an EBM model on any ONNX compliant runtime.

Features

  • Binary classification

  • Regression

  • Continuous, nominal, and ordinal variables

  • N-way interactions

  • Multi-class classification (support is still experimental in EBM)

  • Expose predictions probabilities

  • Expose local explanations

The export of the models is tested against ONNX Runtime.

Get Started

Train an EBM model:

# prepare dataset
df = pd.read_csv('titanic_train.csv')
df = df.dropna()

feature_columns = ['Age', 'Fare', 'Pclass', 'Embarked']
label_column = "Survived"
y = df[[label_column]]
le = LabelEncoder()
y_enc = le.fit_transform(y)
x = df[feature_columns]
x_train, x_test, y_train, y_test = train_test_split(x, y_enc)

# train an EBM model
model = ExplainableBoostingClassifier(
    feature_types=['continuous', 'continuous', 'continuous', 'nominal'],
)
model.fit(x_train, y_train)

Then you can convert it to ONNX in a single function call:

import onnx
import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    ebm2onnx.get_dtype_from_pandas(x_train),
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

If your dataset is not a pandas dataframe, you can provide the features’ types directly:

import ebm2onnx

onnx_model = ebm2onnx.to_onnx(
    model,
    dtype={
        'Age': 'double',
        'Fare': 'double',
        'Pclass': 'int',
        'Embarked': 'str',
    }
)
onnx.save_model(onnx_model, 'ebm_model.onnx')

Try it live

Supporting organizations

The following organizations are supporting Ebm2onnx:

  • SoftAtHome: Main supporter of Ebm2onnx development.

  • InterpretML: Ebm2onnx is hosted under the umbrella of the InterpretML organization.

img_sah img_interpret

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebm2onnx-3.1.3.tar.gz (16.5 kB view details)

Uploaded Source

File details

Details for the file ebm2onnx-3.1.3.tar.gz.

File metadata

  • Download URL: ebm2onnx-3.1.3.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.13

File hashes

Hashes for ebm2onnx-3.1.3.tar.gz
Algorithm Hash digest
SHA256 795782470039c6590175c6896788910363cb1e4ae97bb67d920d078dffff7af3
MD5 b1a65ce1a481ca5a27d0bc896a18954a
BLAKE2b-256 4b962c431f34fa8e18260ca16b3caa38892461092a530cbcd7412ded30b945a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page