Skip to main content

extended Better Oscillation Detection, implemented in python3

Project description

eBOSC: extended Better OSCillation Detection

Overview


eBOSC (extended Better OSCillation detection) is a toolbox (or a set of scripts) that can be used to detect the occurrence of rhythms in continuous signals (i.e., at the single trial level). It uses a static aperiodic ‘background’ spectrum as the basis to define a ‘power threshold’ that continuous signals have to exceed in order to qualify as ‘rhythmic’. As such, it leverages the observation that stochastic components of the frequency spectrum of neural data are aharacterized by a '1/f'-like power spectrum. An additional ‘duration threshold’ can be set up in advance, or rhythmic episodes can be filtered by duration following detection to ensure that detected rhythmic episodes have a rather sustained vs. transient appearance.

Documentation


A project wiki for eBOSC is available here.

Simulation scripts and data files regarding the 2020 NeuroImage paper can be found at https://github.com/jkosciessa/eBOSC_resources_NI2020.

A MATLAB implementation can be found here.

Installation


Get the latest development version using git: git clone https://github.com/jkosciessa/eBOSC_py

To install this cloned copy, move into the cloned directory and run: pip install .

The example files in the /data directory are stored in Git Large File Storage. To retrieve them install the lfs (git lfs install), and then get the files with git lfs pull.

To get started, see the example provided in examples/eBOSC_example_empirical.ipynb. Data is based off a FieldTrip structure and conversion scripts to MNE-style format are provided in the examples directory.

Problems?


If you want to use the tool but encounter issues, or would like to suggest a new feature, feel free to open an issue.

Credits


If you find the method useful, please cite the following papers:

Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., & Werkle-Bergner, M. (2020). Single-trial characterization of neural rhythms: Potential and challenges. NeuroImage, 206, 116331. http://doi.org/10.1016/j.neuroimage.2019.116331

Whitten, T. A., Hughes, A. M., Dickson, C. T., & Caplan, J. B. (2011). A better oscillation detection method robustly extracts EEG rhythms across brain state changes: The human alpha rhythm as a test case. NeuroImage, 54(2), 860–874. http://doi.org/10.1016/j.neuroimage.2010.08.064

License


eBOSC is an extension of the BOSC library and partially uses scripts from the original toolbox. These functions are included in the 'external' folder of the current package.

The eBOSC library (and the original BOSC library) are free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

The eBOSC library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ebosc-0.10.dev0.tar.gz (31.1 kB view details)

Uploaded Source

Built Distribution

ebosc-0.10.dev0-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file ebosc-0.10.dev0.tar.gz.

File metadata

  • Download URL: ebosc-0.10.dev0.tar.gz
  • Upload date:
  • Size: 31.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for ebosc-0.10.dev0.tar.gz
Algorithm Hash digest
SHA256 4c864f26daffa7fca145a0d1e5dfb2a43a55819fa2af5d524936e61d1aca9005
MD5 5d8870cc4dd42d8d113c34c8cfa75584
BLAKE2b-256 0421daf4bbef3834a701608cf66beedd3d72e8e27af53b90859d46ee6d61a2e5

See more details on using hashes here.

File details

Details for the file ebosc-0.10.dev0-py3-none-any.whl.

File metadata

  • Download URL: ebosc-0.10.dev0-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.7.9

File hashes

Hashes for ebosc-0.10.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 1280382d2f5664bf8382f1e0394a0fd958c91f08b411ea64c570add3bab26605
MD5 92b0f0d7fa9e839333e509a688081fc2
BLAKE2b-256 d11f235975b5622fc0ac6554e8a61e8f2a7f00faf41046bb51509666b7975f0a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page