Skip to main content

A Python package for the fetching (and some processing) of eCallisto data via the eCallisto API.

Project description

Ecallisto NG

Ecallisto NG is a compact yet effective Python package designed to facilitate seamless interaction with the Ecallisto API. The package is constructed in Python 3.9 and utilizes the requests library to directly access the Ecallisto API via the link: https://v000792.fhnw.ch/api/redoc.

Installation

To install this package, clone this repository and use pip for installation. Execute the following command in your terminal: pip install -e .

PyPI

Ecallisto NG is conveniently available on PyPI as well. To download, visit the following link: https://pypi.org/project/ecallisto-ng/

Example

Please have a look at the jupyter notebook under example.

Usage

Here's a guide on how to use the different features of Ecallisto NG:

Data Fetching

Fetching data is easy using the get_data function, housed under the ecallisto_ng.data_fetching.get_data module. Here's an example:

from ecallisto_ng.data_fetching.get_data import get_data

parameters = {
    "instrument_name": "austria_unigraz_01",
    "start_datetime": "2021-03-01 06:30:00",
    "end_datetime": "2021-03-07 23:30:00",
    "timebucket": "15m",
    "agg_function": "MAX",
}

df = get_data(**parameters)

Getting Data Availability

You can also check the availability of data using the get_tables and get_table_names_with_data_between_dates function, housed under the ecallisto_ng.data_fetching.get_information module. Here's an example:

from ecallisto_ng.data_fetching.get_information import get_tables, get_table_names_with_data_between_dates
from datetime import datetime, timedelta

get_tables()[:5]

get_table_names_with_data_between_dates(
    start_datetime=(datetime.now() - timedelta(hours=24)).strftime("%Y-%m-%d %H:%M:%S"),
    end_datetime=datetime.now().strftime("%Y-%m-%d %H:%M:%S")
)

Plotting

Ecallisto NG provides basic plotting capabilities. Here's an example of how to generate a spectogram:

from ecallisto_ng.plotting.utils import fill_missing_timesteps_with_nan, plot_spectogram

df_filled = fill_missing_timesteps_with_nan(df)
plot_spectogram(df_filled,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

Spectogram editing

We also provide some basic functionalities to edit the spectogram. Here's how you can do it:

from ecallisto_ng.data_processing.utils import elimwrongchannels, subtract_constant_background, subtract_rolling_background

df = elimwrongchannels(df)
df = fill_missing_timesteps_with_nan(df)
df = subtract_constant_background(df)
df = subtract_rolling_background(df)

plot_spectogram(df,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

These simple commands allow you to easily manipulate spectogram data, enabling effective use of the Ecallisto API for your needs. Be careful when using

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecallisto_ng-0.1.1.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

ecallisto_ng-0.1.1-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file ecallisto_ng-0.1.1.tar.gz.

File metadata

  • Download URL: ecallisto_ng-0.1.1.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for ecallisto_ng-0.1.1.tar.gz
Algorithm Hash digest
SHA256 4599f3630da2a84fc8a9c75d9c158f75256fc2104ee094343560f91f7dccf78f
MD5 f86d56a1fa096ae8158e9341fa3a2ee9
BLAKE2b-256 c2e1e7e1d42a1f0d39225968c9cdb1a52f7aa4e0afbeaaa544f318d18320878c

See more details on using hashes here.

File details

Details for the file ecallisto_ng-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ecallisto_ng-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 96af251a3875bbc36bc9c50ec307500febd9db4a16e2849777c4d4082a53f924
MD5 7a7a45aa3309c9a8624601c0974b74b6
BLAKE2b-256 58739018202067095d431f54c4b464748b9d57b3393d1a83ca0492ca76f312aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page