Skip to main content

A Python package for the fetching (and some processing) of eCallisto data via the eCallisto API.

Project description

Ecallisto NG

Ecallisto NG is a compact yet effective Python package designed to facilitate seamless interaction with the Ecallisto API. The package is constructed in Python 3.9 and utilizes the requests library to directly access the Ecallisto API via the link: https://v000792.fhnw.ch/api/redoc.

Installation

To install this package, clone this repository and use pip for installation. Execute the following command in your terminal: pip install -e .

PyPI

Ecallisto NG is conveniently available on PyPI as well. To download, visit the following link: https://pypi.org/project/ecallisto-ng/

Example

Please have a look at the jupyter notebook under example.

Usage

Here's a guide on how to use the different features of Ecallisto NG:

Data Fetching

Fetching data is easy using the get_data function, housed under the ecallisto_ng.data_fetching.get_data module. Here's an example:

from ecallisto_ng.data_fetching.get_data import get_data

parameters = {
    "instrument_name": "austria_unigraz_01",
    "start_datetime": "2021-03-01 06:30:00",
    "end_datetime": "2021-03-07 23:30:00",
    "timebucket": "15m",
    "agg_function": "MAX",
}

df = get_data(**parameters)

Getting Data Availability

You can also check the availability of data using the get_tables and get_table_names_with_data_between_dates function, housed under the ecallisto_ng.data_fetching.get_information module. Here's an example:

from ecallisto_ng.data_fetching.get_information import get_tables, get_table_names_with_data_between_dates
from datetime import datetime, timedelta

get_tables()[:5]

get_table_names_with_data_between_dates(
    start_datetime=(datetime.now() - timedelta(hours=24)).strftime("%Y-%m-%d %H:%M:%S"),
    end_datetime=datetime.now().strftime("%Y-%m-%d %H:%M:%S")
)

Plotting

Ecallisto NG provides basic plotting capabilities. Here's an example of how to generate a spectogram:

from ecallisto_ng.plotting.utils import fill_missing_timesteps_with_nan, plot_spectogram

df_filled = fill_missing_timesteps_with_nan(df)
plot_spectogram(df_filled,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

Spectogram editing

We also provide some basic functionalities to edit the spectogram. Here's how you can do it:

from ecallisto_ng.data_processing.utils import elimwrongchannels, subtract_constant_background, subtract_rolling_background

df = elimwrongchannels(df)
df = fill_missing_timesteps_with_nan(df)
df = subtract_constant_background(df)
df = subtract_rolling_background(df)

plot_spectogram(df,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

These simple commands allow you to easily manipulate spectogram data, enabling effective use of the Ecallisto API for your needs. Be careful when using elimwrongchannels after fill_missing_timesteps_with_nan.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecallisto_ng-0.1.7.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

ecallisto_ng-0.1.7-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file ecallisto_ng-0.1.7.tar.gz.

File metadata

  • Download URL: ecallisto_ng-0.1.7.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for ecallisto_ng-0.1.7.tar.gz
Algorithm Hash digest
SHA256 5d389e57d266eed9ef3d182bf830f9410acb0c3a47157122fb086af5ac085eb4
MD5 7ae52fdb5ea684add973e02337ee4f47
BLAKE2b-256 cb99458e5db18c06113e4569e334e3250be126a5e671cefac909e394c3af70e7

See more details on using hashes here.

File details

Details for the file ecallisto_ng-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: ecallisto_ng-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for ecallisto_ng-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 67729c4ddfa695784e18feb8a2a417cabaafb9eb6ed2a96e155ab22c6dbeef14
MD5 c737b086648d0edce8eaf299c7c24c28
BLAKE2b-256 43a58b4cc0e2749c33cdaf153a40e4d2df83b81a38d55e946d7c3cc060127a55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page