Skip to main content

A Python package for the fetching (and some processing) of eCallisto data via the eCallisto API.

Project description

Ecallisto NG

Ecallisto NG is a compact yet effective Python package designed to facilitate seamless interaction with the Ecallisto API. The package is constructed in Python 3.9 and utilizes the requests library to directly access the Ecallisto API via the link: https://v000792.fhnw.ch/api/redoc.

Installation

To install this package, clone this repository and use pip for installation. Execute the following command in your terminal: pip install -e .

PyPI

Ecallisto NG is conveniently available on PyPI as well. To download, visit the following link: https://pypi.org/project/ecallisto-ng/

Example

Please have a look at the jupyter notebook under example.

Usage

Here's a guide on how to use the different features of Ecallisto NG:

Data Fetching

Fetching data is easy using the get_data function, housed under the ecallisto_ng.data_fetching.get_data module. Here's an example:

from ecallisto_ng.data_fetching.get_data import get_data

parameters = {
    "instrument_name": "austria_unigraz_01",
    "start_datetime": "2021-03-01 06:30:00",
    "end_datetime": "2021-03-07 23:30:00",
    "timebucket": "15m",
    "agg_function": "MAX",
}

df = get_data(**parameters)

Getting Data Availability

You can also check the availability of data using the get_tables and get_table_names_with_data_between_dates function, housed under the ecallisto_ng.data_fetching.get_information module. Here's an example:

from ecallisto_ng.data_fetching.get_information import get_tables, get_table_names_with_data_between_dates
from datetime import datetime, timedelta

get_tables()[:5]

get_table_names_with_data_between_dates(
    start_datetime=(datetime.now() - timedelta(hours=24)).strftime("%Y-%m-%d %H:%M:%S"),
    end_datetime=datetime.now().strftime("%Y-%m-%d %H:%M:%S")
)

Plotting

Ecallisto NG provides basic plotting capabilities. Here's an example of how to generate a spectogram:

from ecallisto_ng.plotting.utils import fill_missing_timesteps_with_nan, plot_spectogram

df_filled = fill_missing_timesteps_with_nan(df)
plot_spectogram(df_filled,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

Spectogram editing

We also provide some basic functionalities to edit the spectogram. Here's how you can do it:

from ecallisto_ng.data_processing.utils import elimwrongchannels, subtract_constant_background, subtract_rolling_background

df = elimwrongchannels(df)
df = fill_missing_timesteps_with_nan(df)
df = subtract_constant_background(df)
df = subtract_rolling_background(df)

plot_spectogram(df,  parameters["instrument_name"], parameters["start_datetime"], parameters["end_datetime"])

These simple commands allow you to easily manipulate spectogram data, enabling effective use of the Ecallisto API for your needs. Be careful when using elimwrongchannels after fill_missing_timesteps_with_nan.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecallisto_ng-0.2.0.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

ecallisto_ng-0.2.0-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file ecallisto_ng-0.2.0.tar.gz.

File metadata

  • Download URL: ecallisto_ng-0.2.0.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for ecallisto_ng-0.2.0.tar.gz
Algorithm Hash digest
SHA256 3142c4f3f6d0943c6a934d50799bea15f398d541a2b88c20f1901afd0f917572
MD5 b1e6929d6a6c72a0d2d0a0364969f9c8
BLAKE2b-256 1215b24fd76c23d0d10e617d69c875a6c750c20ad6c4bd4e5e360887a93c0994

See more details on using hashes here.

File details

Details for the file ecallisto_ng-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: ecallisto_ng-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 10.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for ecallisto_ng-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 44174214c414e486ce2344b7da15e17fb8b50dd5617877a9905529736a282485
MD5 f9b9e6acee4d2457a002b093c4c62015
BLAKE2b-256 c0530bba6979b7e956d178079142b4cbac968fdebccfadf68bb58a15058acb73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page