Skip to main content

High-throughput calculation of EC50 values.

Project description

https://raw.githubusercontent.com/teese/eccpy/master/docs/logo/ECCpy_logo.png

ECCpy, a program for EC50 calculation in python.

The EC50, or the “half maximal effective concentration”, is a key measure of the effectiveness of a compound to affect a biological system. It is commonly used in pharmacology, biology and biochemistry. The EC50 is calculated by fitting the dose-response data to a sigmoidal curve, typically using the Hill equation. Variants include the half maximal “lethal dose” (LD50), and “inhibitor concentration” (IC50).

Features

Robust data analysis

  • fully automated
    • fitting of sigmoidal curves to dose-response data

    • calculation of EC50, LD50 or IC50 values.

    • high-throughput analysis

    • comparison of EC50 values from different experiments

    • calculation of EC25 or EC75 values

  • accepts REAL biological data
    • pre-filtering excludes nonsense data

    • judgefit module identifies low-quality EC50 values

Designed for humans

  • easy-to-use excel files:
    • excel settings file

    • excel input file with dose and response data

    • excel output file with EC50 values

  • simple graphical output: - sigmoidal curves with EC50 shown on graph - daily summary barcharts and curves

Customisable

  • simple python syntax

  • open-source software

  • built on powerful numpy, scipy, and pandas packages

Development status

ECCpy has been used extensively for the analysis of LD50 assays by bachelor, master and PhD students within the lab of Dieter Langosch at the Technical University of Munich in Germany. However this software is released “as is”, and is likely to contain bugs related to particular data types, python versions or operating systems.

Installation

pip install eccpy

ECCpy is written for python 3.x. We recommend the Anaconda python distribution, which contains all the required python packages (numpy, scipy, pandas and matplotlib). https://www.continuum.io/downloads

Usage

Using ECCpy requires only the following: 1) Prepare your data, 2) update an excel settings file, 3) tell ECCpy to “run”.

See the wiki for more details (https://github.com/teese/eccpy/wiki).

1) Prepare your data.
  • use the excel or microplate templates in the eccpy/templates folder

  • for the generic excel format, simply open the template and paste in your dose and response data.

2) Update an excel settings file
  • copy the ECCpy_settings_template.xlsx from eccpy/templates

  • open the excel file, input the name and location of your datafiles, and the desired location for your output files

  • write “TRUE” next to the files you want to examine

https://raw.githubusercontent.com/teese/eccpy/master/docs/images/01_run_curvefit_settings.png
3) tell ECCpy to “run”.
  • run the ipython/jupyter notebook, which opens a python interpreter in your web browser

  • paste in the following three lines. Replace the location of your settings file.

  • hit Ctrl-Enter to run

  • based on your output, adjust the quality thresholds in the settings file to suit your data

Example:

import eccpy
settings = r"D:\data\ECCpy_settings.xlsx"
eccpy.run_curvefit(settings)
eccpy.run_gatherer(settings)

Test

  • run eccpy on the provided example files (eccpy/examples) before processing your own data.

ECCpy output

run_curvefit program
  • individual dose-response curves

  • automatic judging of data quality

  • daily summary curves, barchart and more!

https://raw.githubusercontent.com/teese/eccpy/master/docs/images/curve_fit_output_sample3.png https://raw.githubusercontent.com/teese/eccpy/master/docs/images/generated_data_0EC50_analysis_fig.png

run_gatherer program

  • combines data from multiple experiments

  • excludes EC50 values that are not of sufficient quality, according to user-defined thresholds

  • bar charts with mean and SEM over all selected experiments

  • scatter plots showing individual datapoints for each day/experiment, and more!

compare_rawdata program

  • collects raw data and dose-response curves from multiple experiments

  • compares datapoints and fitted curves between the selected samples

https://raw.githubusercontent.com/teese/eccpy/master/docs/images/20160527_0_compare_raw.png

Contribute

If you encounter a bug or ECCpy doesn’t work for any reason, please send an email to Mark Teese (contact details below) or initiate an issue in Github.

Non-programmers can contribute by:
  • testing ECCpy with your particular datasets

  • suggesting features

  • improving the readme and documentation

Pull requests are also very welcome.

License

ECCpy is free software distributed under the GNU General Public License version 3.

Citation

If you use ECCpy in your research, please use the following citation.

Schanzenbach C, Schmidt FC, Breckner P, Teese MG, & Langosch D (2017) Identifying ionic interactions within a membrane using BLaTM, a genetic tool to measure homo-and heterotypic transmembrane helix-helix interactions. Scientific Reports 7(7):43476.

https://www.ncbi.nlm.nih.gov/pubmed/28266525

Contact

Currently the code is maintained by Mark Teese at the Technical University of Munich.

Contact details are at the Langosch lab website of the Technical University of Munich, and/or in the image below.

https://raw.githubusercontent.com/teese/eccpy/master/docs/images/signac_seine_bei_samois.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eccpy-0.4.6.tar.gz (130.6 kB view details)

Uploaded Source

Built Distribution

eccpy-0.4.6-py3-none-any.whl (71.1 kB view details)

Uploaded Python 3

File details

Details for the file eccpy-0.4.6.tar.gz.

File metadata

  • Download URL: eccpy-0.4.6.tar.gz
  • Upload date:
  • Size: 130.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for eccpy-0.4.6.tar.gz
Algorithm Hash digest
SHA256 7507b7c262ff602c03ac76ee3065cb1d0315242aff6b8f478767f478eddc9ec6
MD5 9f277ad491a7089df86e63e175aab0f3
BLAKE2b-256 22b5aee7a25e2e0b9b2e9bd8d22b2171a7f08563003be449cdebd819ca7244c5

See more details on using hashes here.

File details

Details for the file eccpy-0.4.6-py3-none-any.whl.

File metadata

File hashes

Hashes for eccpy-0.4.6-py3-none-any.whl
Algorithm Hash digest
SHA256 7c97c9b318afdd8f5ded90d7ec76d3b20be9a890d3ad106826b24a6778fdf63e
MD5 d89cf6290c483d3931befa7b5a0e61ad
BLAKE2b-256 fe729fb246769b91f602dda54b31f716ece60f20a1a87ae09a2fdfacd90ad59d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page