Skip to main content

API for a high precision ECG Database with annotated R peaks (GUDB)

Project description

This is a mirror of the ECG GUDB http://researchdata.gla.ac.uk/716/ and provides transparent online access via a python API.

DOI: https://doi.org/10.5281/zenodo.10925419

It contains ECGs from 25 subjects. Each subject was recorded performing 5 different tasks for two minutes:
  • sitting

  • a maths test on a tablet

  • walking on a treadmill

  • running on a treadmill

  • using a hand bike

The following channels were recorded with two Attys (https://www.attys.tech/) running synchronously:
  • Einthoven II and III with standard cables and the amplifier worn around the waist

  • Exercise cheststrap ECG which resembles approximtely V2-V1 with the ECG amplifier directly mounted on the strap

  • Acceleration in X/Y/Z whith the sensor mounted directly on the chest strap

The cheststrap ECG allowed R peak detection even while jogging at a very high precision (+/- one sample). The sampling rate was 250Hz at a resolution of 24 bits. The database contains the unfiltered, DC-coupled signals as originally recorded. In order to be able to link the ECG artefacts to the behaviour of the subject all but one subject gave permission to be filmed and the videos are also part of the database.

Installation

Simply install via pip or pip3:

pip install ecg_gudb_database
pip3 install ecg_gudb_database

Usage

Check out usage_example.py on github which plots the ECG and the heartrate of one subject.

Module

The module is called ecg_gudb_database:

from ecg_gudb_database import GUDb

The constructor loads the ECG data of one subject/experiment from github:

ecg_class = GUDb(subject_number, experiment)

where subject_number is from 0..24 and experiment is ‘sitting’, ‘maths’, ‘walking’, ‘hand_bike’ or ‘jogging’. The array ecg_class.experiments is an array of all experiments so that one can loop through the different experiments.

Optionally, in case you decide later to download the whole dataset from http://researchdata.gla.ac.uk/716/ then specify the absolute path to the dataset with the optional parameter url without the “file:” specifier:

ecg_class = GUDb(subject_number, experiment, url = "/home/bp1/dataset_dataset_716/experiment_data/")

Retrieve the ECG data

The data is available as numpy arrays. The sampling rate is 250Hz for all experiments (ecg_class.fs). We have recorded Einthoven and from a chest strap.

Einthoven:

ecg_class.einthoven_I, ecg_class.einthoven_I_filt
ecg_class.einthoven_II, ecg_class.einthoven_II_filt
ecg_class.einthoven_III, ecg_class.einthoven_III_filt

Chest strap:

ecg_class.cs_V2_V1, ecg_class.cs_V2_V1_filt

where the filtered versions have 50Hz mains and DC removed.

R peak annotations

The two boolean variables ecg_class.anno_cs_exists and ecg_class.anno_cables_exists tell the user if annotations exist. If yes they can be obtained:

if ecg_class.anno_cs_exists:
    chest_strap_anno = ecg_class.anno_cs
else:
    print('No chest strap annotations')
if ecg_class.anno_cables_exists:
    cables_anno = ecg_class.anno_cables
else:
    print("No cables annotations")

Accelerometer data

The accelerometer was worn on a standard belt around the subject’s waist:

ecg_class.acc_x
ecg_class.acc_y
ecg_class.acc_z

Videos and full dataset for offline use

Where the participant has consented, there is a video for each of the tasks. Here is an example: https://berndporr.github.io/ECG-GUDB/ The video and ECG data have been synchronised so they start and end at the same time. The full dataset with the videos can be requested here:

http://researchdata.gla.ac.uk/716/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ecg_gudb_database-1.1.1.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

ecg_gudb_database-1.1.1-py3-none-any.whl (11.2 kB view details)

Uploaded Python 3

File details

Details for the file ecg_gudb_database-1.1.1.tar.gz.

File metadata

  • Download URL: ecg_gudb_database-1.1.1.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for ecg_gudb_database-1.1.1.tar.gz
Algorithm Hash digest
SHA256 7785a6cf6ce23b712575322702fa529042b776ad24262e343ae62c96b92ec161
MD5 391ff23f725210e783a2745d847682ca
BLAKE2b-256 297a9770c759e4c9a842074b33be13a5561c815753c06944f8e29d40044a21c8

See more details on using hashes here.

File details

Details for the file ecg_gudb_database-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for ecg_gudb_database-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9ca8eea397dae560b0e13bb34cc34e75a81f8257b359a34b84732d14e1d91069
MD5 ea3c6f4433742c6165047776b12e18b8
BLAKE2b-256 fe7a116cebc46d3e0a18d65d749afc9352078da6be02f87e55fb2f0c04f3713a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page