A pytorch implementation of Eclipse
Project description
Eclipse
Implementing Paletta et al in Pytorch
Most of the codebase comes from Fiery
Install
pip install eclipse_pytorch
How to use
import torch
from eclipse_pytorch.model import Eclipse
eclipse = Eclipse(horizon=5)
let's simulte some input images:
images = [torch.rand(2, 3, 128, 128) for _ in range(4)]
preds = eclipse(images)
you get a dict with forecasted masks and irradiances:
len(preds['masks']), preds['masks'][0].shape, preds['irradiances'].shape
(6, torch.Size([2, 4, 128, 128]), torch.Size([2, 6]))
Citation
@article{paletta2021eclipse,
title = {{ECLIPSE} : Envisioning Cloud Induced Perturbations in Solar Energy},
author = {Quentin Paletta and Anthony Hu and Guillaume Arbod and Joan Lasenby},
year = {2021},
eprinttype = {arXiv},
eprint = {2104.12419}
}
Contribute
This repo is made with nbdev, please read the documentation to contribute
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
eclipse_pytorch-0.0.8.tar.gz
(16.1 kB
view details)
Built Distribution
File details
Details for the file eclipse_pytorch-0.0.8.tar.gz
.
File metadata
- Download URL: eclipse_pytorch-0.0.8.tar.gz
- Upload date:
- Size: 16.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.5.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dc73af281153764e70df6e2153f4118d49d012267d9d66317f57e12db566876 |
|
MD5 | e8fa015e940b1c60c74c078c80888af0 |
|
BLAKE2b-256 | 71aeedf126362a552f73948c94ed09d1d3e653c3500e6ef9447cde863f7fa525 |
File details
Details for the file eclipse_pytorch-0.0.8-py3-none-any.whl
.
File metadata
- Download URL: eclipse_pytorch-0.0.8-py3-none-any.whl
- Upload date:
- Size: 14.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.5.0 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72be759893d4a00ad8e80f53996d239537dd1790aef208a777359dd506200438 |
|
MD5 | 59c899a85373829ff39f7c4795737e65 |
|
BLAKE2b-256 | ac6c431e5882ad5e654c0add72b8c9db0ae5ef09684f29d6a00e908331743966 |