Advanced Econometric Analysis Tools
Project description
EconKit
econkit
is a Python library that provides various statistical and econometric analysis tools, including descriptive statistics, correlation matrices, and tests for stationarity and autocorrelation.
Installation
Ensure you have the required packages installed:
pip install pandas numpy scipy statsmodels tabulate yfinance pandas requests tabulate warnings
Functions
Descriptive Statistics
descriptives(data)
Computes descriptive statistics for each numeric column in a DataFrame.
Parameters:
data
:pandas.DataFrame
containing the data to be analyzed.
Returns:
- None. Prints a summary table of the descriptive statistics.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.descriptives(df)
Correlation Matrix
correlation(df, method='Pearson', p=False)
Calculates and prints the correlation matrix and p-values for numeric columns in the provided DataFrame. Supports Pearson, Spearman, and Kendall correlation methods.
Parameters:
df
:pandas.DataFrame
containing the data to be analyzed.method
:str
(optional). Method of correlation ('Pearson', 'Spearman', or 'Kendall'). Default is 'Pearson'.p
:bool
(optional). If True, p-value matrix is also printed; if False, only the correlation matrix is printed. Default is False.
Returns:
- None. Prints the correlation matrix and optionally the p-value matrix.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.correlation(df, method='Spearman', p=True)
Augmented Dickey-Fuller (ADF) Test
adf(dataframe, maxlag=None, regression='c', autolag='AIC', handle_na='drop')
Performs the ADF test on each column in the DataFrame and returns a summary table.
Parameters:
dataframe
:pandas.DataFrame
containing the data to be tested.maxlag
:int
(optional). Maximum number of lags to use. Default is None.regression
:str
{'c', 'ct', 'ctt', 'nc'} (optional). Type of regression trend. Default is 'c'.autolag
:str
(optional). Method to use when automatically determining the lag length ('AIC', 'BIC', 't-stat'). Default is 'AIC'.handle_na
:str
{'drop', 'fill'} (optional). How to handle missing values. Default is 'drop'.
Returns:
- None. Prints a summary table of the ADF test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.adf(df, regression='ct', autolag='BIC')
KPSS Test
kpss(dataframe, regression='c', nlags='auto', handle_na='drop')
Performs the KPSS test on each column in the DataFrame and returns a summary table.
Parameters:
dataframe
:pandas.DataFrame
containing the data to be tested.regression
:str
{'c', 'ct'} (optional). Type of regression trend. Default is 'c'.nlags
:str
orint
(optional). Number of lags to use. Default is 'auto'.handle_na
:str
{'drop', 'fill'} (optional). How to handle missing values. Default is 'drop'.
Returns:
- None. Prints a summary table of the KPSS test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.kpss(df, regression='ct', nlags='auto')
Durbin-Watson Test
dw(data)
Performs the Durbin-Watson autocorrelation test and Ljung-Box test for each column of the dataset.
Parameters:
data
:pandas.DataFrame
where each column is a time series.
Returns:
- None. Prints a summary table of the Durbin-Watson test results.
Example Usage:
import pandas as pd
from econkit import econometrics as ec
df = pd.read_csv('your_data.csv')
ec.dw(df)
Financial Data Retrieval
data(ticker_symbol, start_date, end_date, interval)
Downloads financial data from Yahoo Finance and calculates daily returns.
Parameters:
ticker_symbol
:str
. The stock ticker symbol.start_date
:str
. Start date in 'dd-mm-yyyy' format.end_date
:str
. End date in 'dd-mm-yyyy' format.interval
:str
. Data interval (e.g., '1d', '1wk', '1mo').
Returns:
pandas.DataFrame
containing the stock data and calculated returns.
Example Usage:
from econkit import finance as f
start = '01-06-2024'
end = '07-06-2024'
int = '1m'
SP500 = f.data('^GSPC', start, end, int)
SP500.head()
Usage Notes
- Ensure your data is clean and properly formatted before using these functions.
- Some functions handle missing values; specify your preferred method using the
handle_na
parameter. - For time series analysis, ensure your data is indexed by date.
For more details, refer to the function docstrings or the examples provided above.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file econkit-0.4.1.9.9.3.tar.gz
.
File metadata
- Download URL: econkit-0.4.1.9.9.3.tar.gz
- Upload date:
- Size: 9.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0105f0820c2917c8d9f7974b724db618b7492696106caf57a7d435d28d975a73 |
|
MD5 | 542981e308b7f561e7cf5c0d83ea9959 |
|
BLAKE2b-256 | bd82c324785647aff166c8e23843ce42f8e8e9b27b61f271d0a137c0769e52c8 |
File details
Details for the file econkit-0.4.1.9.9.3-py3-none-any.whl
.
File metadata
- Download URL: econkit-0.4.1.9.9.3-py3-none-any.whl
- Upload date:
- Size: 9.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d915100d6e2238681c0711cf29190dd28020ce09179e7bba2bb0b8a6f39c57e |
|
MD5 | 8e18469b912fbfeff747824ab99ddedf |
|
BLAKE2b-256 | 9061b745d0fef27a834fcdf25aee1712c9c35d06d0bb6b278e375dac32e603f7 |