Skip to main content

This package contains several methods for calculating Conditional Average Treatment Effects

Project description

Build status PyPI version PyPI wheel Supported Python versions

econml-logo EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation

EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal to combine state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. The promise of EconML:

  • Implement recent techniques in the literature at the intersection of econometrics and machine learning
  • Maintain flexibility in modeling the effect heterogeneity (via techniques such as random forests, boosting, lasso and neural nets), while preserving the causal interpretation of the learned model and often offering valid confidence intervals
  • Use a unified API
  • Build on standard Python packages for Machine Learning and Data Analysis

One of the biggest promises of machine learning is to automate decision making in a multitude of domains. At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X. The methods implemented are applicable even with observational (non-experimental or historical) datasets. For the estimation results to have a causal interpretation, some methods assume no unobserved confounders (i.e. there is no unobserved variable not included in X, W that simultaneously has an effect on both T and Y), while others assume access to an instrument Z (i.e. an observed variable Z that has an effect on the treatment T but no direct effect on the outcome Y). Most methods provide confidence intervals and inference results.

For detailed information about the package, consult the documentation at https://econml.azurewebsites.net/.

For information on use cases and background material on causal inference and heterogeneous treatment effects see our webpage at https://www.microsoft.com/en-us/research/project/econml/

Table of Contents

News

If you'd like to contribute to this project, see the Help Wanted section below.

July 3, 2024: Release v0.15.1, see release notes here

Previous releases

February 12, 2024: Release v0.15.0, see release notes here

November 11, 2023: Release v0.15.0b1, see release notes here

May 19, 2023: Release v0.14.1, see release notes here

November 16, 2022: Release v0.14.0, see release notes here

June 17, 2022: Release v0.13.1, see release notes here

January 31, 2022: Release v0.13.0, see release notes here

August 13, 2021: Release v0.12.0, see release notes here

August 5, 2021: Release v0.12.0b6, see release notes here

August 3, 2021: Release v0.12.0b5, see release notes here

July 9, 2021: Release v0.12.0b4, see release notes here

June 25, 2021: Release v0.12.0b3, see release notes here

June 18, 2021: Release v0.12.0b2, see release notes here

June 7, 2021: Release v0.12.0b1, see release notes here

May 18, 2021: Release v0.11.1, see release notes here

May 8, 2021: Release v0.11.0, see release notes here

March 22, 2021: Release v0.10.0, see release notes here

March 11, 2021: Release v0.9.2, see release notes here

March 3, 2021: Release v0.9.1, see release notes here

February 20, 2021: Release v0.9.0, see release notes here

January 20, 2021: Release v0.9.0b1, see release notes here

November 20, 2020: Release v0.8.1, see release notes here

November 18, 2020: Release v0.8.0, see release notes here

September 4, 2020: Release v0.8.0b1, see release notes here

March 6, 2020: Release v0.7.0, see release notes here

February 18, 2020: Release v0.7.0b1, see release notes here

January 10, 2020: Release v0.6.1, see release notes here

December 6, 2019: Release v0.6, see release notes here

November 21, 2019: Release v0.5, see release notes here.

June 3, 2019: Release v0.4, see release notes here.

May 3, 2019: Release v0.3, see release notes here.

April 10, 2019: Release v0.2, see release notes here.

March 6, 2019: Release v0.1, welcome to have a try and provide feedback.

Getting Started

Installation

Install the latest release from PyPI:

pip install econml

To install from source, see For Developers section below.

Usage Examples

Estimation Methods

Double Machine Learning (aka RLearner) (click to expand)
  • Linear final stage
from econml.dml import LinearDML
from sklearn.linear_model import LassoCV
from econml.inference import BootstrapInference

est = LinearDML(model_y=LassoCV(), model_t=LassoCV())
### Estimate with OLS confidence intervals
est.fit(Y, T, X=X, W=W) # W -> high-dimensional confounders, X -> features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals

### Estimate with bootstrap confidence intervals
est.fit(Y, T, X=X, W=W, inference='bootstrap')  # with default bootstrap parameters
est.fit(Y, T, X=X, W=W, inference=BootstrapInference(n_bootstrap_samples=100))  # or customized
lb, ub = est.effect_interval(X_test, alpha=0.05) # Bootstrap confidence intervals
  • Sparse linear final stage
from econml.dml import SparseLinearDML
from sklearn.linear_model import LassoCV

est = SparseLinearDML(model_y=LassoCV(), model_t=LassoCV())
est.fit(Y, T, X=X, W=W) # X -> high dimensional features
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Confidence intervals via debiased lasso
  • Generic Machine Learning last stage
from econml.dml import NonParamDML
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier

est = NonParamDML(model_y=RandomForestRegressor(),
                  model_t=RandomForestClassifier(),
                  model_final=RandomForestRegressor(),
                  discrete_treatment=True)
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
Dynamic Double Machine Learning (click to expand)
from econml.panel.dml import DynamicDML
# Use defaults
est = DynamicDML()
# Or specify hyperparameters
est = DynamicDML(model_y=LassoCV(cv=3), 
                 model_t=LassoCV(cv=3), 
                 cv=3)
est.fit(Y, T, X=X, W=None, groups=groups, inference="auto")
# Effects
treatment_effects = est.effect(X_test)
# Confidence intervals
lb, ub = est.effect_interval(X_test, alpha=0.05)
Causal Forests (click to expand)
from econml.dml import CausalForestDML
from sklearn.linear_model import LassoCV
# Use defaults
est = CausalForestDML()
# Or specify hyperparameters
est = CausalForestDML(criterion='het', n_estimators=500,       
                      min_samples_leaf=10, 
                      max_depth=10, max_samples=0.5,
                      discrete_treatment=False,
                      model_t=LassoCV(), model_y=LassoCV())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Orthogonal Random Forests (click to expand)
from econml.orf import DMLOrthoForest, DROrthoForest
from econml.sklearn_extensions.linear_model import WeightedLasso, WeightedLassoCV
# Use defaults
est = DMLOrthoForest()
est = DROrthoForest()
# Or specify hyperparameters
est = DMLOrthoForest(n_trees=500, min_leaf_size=10,
                     max_depth=10, subsample_ratio=0.7,
                     lambda_reg=0.01,
                     discrete_treatment=False,
                     model_T=WeightedLasso(alpha=0.01), model_Y=WeightedLasso(alpha=0.01),
                     model_T_final=WeightedLassoCV(cv=3), model_Y_final=WeightedLassoCV(cv=3))
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05)
Meta-Learners (click to expand)
  • XLearner
from econml.metalearners import XLearner
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

est = XLearner(models=GradientBoostingRegressor(),
              propensity_model=GradientBoostingClassifier(),
              cate_models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))

# Fit with bootstrap confidence interval construction enabled
est.fit(Y, T, X=np.hstack([X, W]), inference='bootstrap')
treatment_effects = est.effect(np.hstack([X_test, W_test]))
lb, ub = est.effect_interval(np.hstack([X_test, W_test]), alpha=0.05) # Bootstrap CIs
  • SLearner
from econml.metalearners import SLearner
from sklearn.ensemble import GradientBoostingRegressor

est = SLearner(overall_model=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
  • TLearner
from econml.metalearners import TLearner
from sklearn.ensemble import GradientBoostingRegressor

est = TLearner(models=GradientBoostingRegressor())
est.fit(Y, T, X=np.hstack([X, W]))
treatment_effects = est.effect(np.hstack([X_test, W_test]))
Doubly Robust Learners (click to expand)
  • Linear final stage
from econml.dr import LinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Sparse linear final stage
from econml.dr import SparseLinearDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = SparseLinearDRLearner(model_propensity=GradientBoostingClassifier(),
                            model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
  • Nonparametric final stage
from econml.dr import ForestDRLearner
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = ForestDRLearner(model_propensity=GradientBoostingClassifier(),
                      model_regression=GradientBoostingRegressor())
est.fit(Y, T, X=X, W=W) 
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05)
Double Machine Learning with Instrumental Variables (click to expand)
  • Orthogonal instrumental variable learner
from econml.iv.dml import OrthoIV

est = OrthoIV(projection=False, 
              discrete_treatment=True, 
              discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Nonparametric double machine learning with instrumental variable
from econml.iv.dml import NonParamDMLIV

est = NonParamDMLIV(projection=False, 
                    discrete_treatment=True, 
                    discrete_instrument=True)
est.fit(Y, T, Z=Z, X=X, W=W) # no analytical confidence interval available
treatment_effects = est.effect(X_test)
Doubly Robust Machine Learning with Instrumental Variables (click to expand)
  • Linear final stage
from econml.iv.dr import LinearDRIV

est = LinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
  • Sparse linear final stage
from econml.iv.dr import SparseLinearDRIV

est = SparseLinearDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # Debiased lasso confidence intervals
  • Nonparametric final stage
from econml.iv.dr import ForestDRIV

est = ForestDRIV(discrete_instrument=True, discrete_treatment=True)
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
# Confidence intervals via Bootstrap-of-Little-Bags for forests
lb, ub = est.effect_interval(X_test, alpha=0.05) 
  • Linear intent-to-treat (discrete instrument, discrete treatment)
from econml.iv.dr import LinearIntentToTreatDRIV
from sklearn.ensemble import GradientBoostingRegressor, GradientBoostingClassifier

est = LinearIntentToTreatDRIV(model_y_xw=GradientBoostingRegressor(),
                              model_t_xwz=GradientBoostingClassifier(),
                              flexible_model_effect=GradientBoostingRegressor())
est.fit(Y, T, Z=Z, X=X, W=W)
treatment_effects = est.effect(X_test)
lb, ub = est.effect_interval(X_test, alpha=0.05) # OLS confidence intervals
Deep Instrumental Variables (click to expand)
import keras
from econml.iv.nnet import DeepIV

treatment_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(64, activation='relu'),
                                    keras.layers.Dropout(0.17),
                                    keras.layers.Dense(32, activation='relu'),
                                    keras.layers.Dropout(0.17)])
response_model = keras.Sequential([keras.layers.Dense(128, activation='relu', input_shape=(2,)),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(64, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(32, activation='relu'),
                                  keras.layers.Dropout(0.17),
                                  keras.layers.Dense(1)])
est = DeepIV(n_components=10, # Number of gaussians in the mixture density networks)
             m=lambda z, x: treatment_model(keras.layers.concatenate([z, x])), # Treatment model
             h=lambda t, x: response_model(keras.layers.concatenate([t, x])), # Response model
             n_samples=1 # Number of samples used to estimate the response
             )
est.fit(Y, T, X=X, Z=Z) # Z -> instrumental variables
treatment_effects = est.effect(X_test)

See the References section for more details.

Interpretability

Tree Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreeCateInterpreter
intrp = SingleTreeCateInterpreter(include_model_uncertainty=True, max_depth=2, min_samples_leaf=10)
# We interpret the CATE model's behavior based on the features used for heterogeneity
intrp.interpret(est, X)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

Policy Interpreter of the CATE model (click to expand)
from econml.cate_interpreter import SingleTreePolicyInterpreter
# We find a tree-based treatment policy based on the CATE model
intrp = SingleTreePolicyInterpreter(risk_level=0.05, max_depth=2, min_samples_leaf=1,min_impurity_decrease=.001)
intrp.interpret(est, X, sample_treatment_costs=0.2)
# Plot the tree
plt.figure(figsize=(25, 5))
intrp.plot(feature_names=['A', 'B', 'C', 'D'], fontsize=12)
plt.show()

image

SHAP values for the CATE model (click to expand)
import shap
from econml.dml import CausalForestDML
est = CausalForestDML()
est.fit(Y, T, X=X, W=W)
shap_values = est.shap_values(X)
shap.summary_plot(shap_values['Y0']['T0'])

Causal Model Selection and Cross-Validation

Causal model selection with the `RScorer` (click to expand)
from econml.score import RScorer

# split data in train-validation
X_train, X_val, T_train, T_val, Y_train, Y_val = train_test_split(X, T, y, test_size=.4)

# define list of CATE estimators to select among
reg = lambda: RandomForestRegressor(min_samples_leaf=20)
clf = lambda: RandomForestClassifier(min_samples_leaf=20)
models = [('ldml', LinearDML(model_y=reg(), model_t=clf(), discrete_treatment=True,
                             cv=3)),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final_models=reg(), propensity_model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('drlearner', DRLearner(model_propensity=clf(), model_regression=reg(),
                                  model_final=reg(), cv=3)),
          ('rlearner', NonParamDML(model_y=reg(), model_t=clf(), model_final=reg(),
                                   discrete_treatment=True, cv=3)),
          ('dml3dlasso', DML(model_y=reg(), model_t=clf(),
                             model_final=LassoCV(cv=3, fit_intercept=False),
                             discrete_treatment=True,
                             featurizer=PolynomialFeatures(degree=3),
                             cv=3))
]

# fit cate models on train data
models = [(name, mdl.fit(Y_train, T_train, X=X_train)) for name, mdl in models]

# score cate models on validation data
scorer = RScorer(model_y=reg(), model_t=clf(),
                 discrete_treatment=True, cv=3, mc_iters=2, mc_agg='median')
scorer.fit(Y_val, T_val, X=X_val)
rscore = [scorer.score(mdl) for _, mdl in models]
# select the best model
mdl, _ = scorer.best_model([mdl for _, mdl in models])
# create weighted ensemble model based on score performance
mdl, _ = scorer.ensemble([mdl for _, mdl in models])
First Stage Model Selection (click to expand)

First stage models can be selected either by passing in cross-validated models (e.g. sklearn.linear_model.LassoCV) to EconML's estimators or perform the first stage model selection outside of EconML and pass in the selected model. Unless selecting among a large set of hyperparameters, choosing first stage models externally is the preferred method due to statistical and computational advantages.

from econml.dml import LinearDML
from sklearn import clone
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV

cv_model = GridSearchCV(
              estimator=RandomForestRegressor(),
              param_grid={
                  "max_depth": [3, None],
                  "n_estimators": (10, 30, 50, 100, 200),
                  "max_features": (2, 4, 6),
              },
              cv=5,
           )
# First stage model selection within EconML
# This is more direct, but computationally and statistically less efficient
est = LinearDML(model_y=cv_model, model_t=cv_model)
# First stage model selection ouside of EconML
# This is the most efficient, but requires boilerplate code
model_t = clone(cv_model).fit(W, T).best_estimator_
model_y = clone(cv_model).fit(W, Y).best_estimator_
est = LinearDML(model_y=model_t, model_t=model_y)

Inference

Whenever inference is enabled, then one can get a more structure InferenceResults object with more elaborate inference information, such as p-values and z-statistics. When the CATE model is linear and parametric, then a summary() method is also enabled. For instance:

from econml.dml import LinearDML
# Use defaults
est = LinearDML()
est.fit(Y, T, X=X, W=W)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)
# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)
#  Get the parameter inference summary for the final model
est.summary()
Example Output (click to expand)
# Get the effect inference summary, which includes the standard error, z test score, p value, and confidence interval given each sample X[i]
est.effect_inference(X_test).summary_frame(alpha=0.05, value=0, decimals=3)

image

# Get the population summary for the entire sample X
est.effect_inference(X_test).population_summary(alpha=0.1, value=0, decimals=3, tol=0.001)

image

#  Get the parameter inference summary for the final model
est.summary()

image

Policy Learning

You can also perform direct policy learning from observational data, using the doubly robust method for offline policy learning. These methods directly predict a recommended treatment, without internally fitting an explicit model of the conditional average treatment effect.

Doubly Robust Policy Learning (click to expand)
from econml.policy import DRPolicyTree, DRPolicyForest
from sklearn.ensemble import RandomForestRegressor

# fit a single binary decision tree policy
policy = DRPolicyTree(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the binary decision tree
plt.figure(figsize=(10,5))
policy.plot()
# get feature importances
importances = policy.feature_importances_

# fit a binary decision forest
policy = DRPolicyForest(max_depth=1, min_impurity_decrease=0.01, honest=True)
policy.fit(y, T, X=X, W=W)
# predict the recommended treatment
recommended_T = policy.predict(X)
# plot the first tree in the ensemble
plt.figure(figsize=(10,5))
policy.plot(0)
# get feature importances
importances = policy.feature_importances_

image

To see more complex examples, go to the notebooks section of the repository. For a more detailed description of the treatment effect estimation algorithms, see the EconML documentation.

For Developers

You can get started by cloning this repository. We use setuptools for building and distributing our package. We rely on some recent features of setuptools, so make sure to upgrade to a recent version with pip install setuptools --upgrade. Then from your local copy of the repository you can run pip install -e . to get started (but depending on what you're doing you might want to install with extras instead, like pip install -e .[plt] if you want to use matplotlib integration, or you can use pip install -e .[all] to include all extras).

Help wanted

If you're looking to contribute to the project, we have a number of issues tagged with the help wanted label that are valuable improvements to the library that our team currently does not have time to prioritize where we would greatly appreciate community-initiated PRs.

Running the tests

This project uses pytest for testing. To run all tests locally after installing the package, you can use pip install pytest-runner followed by python setup.py pytest.

However, running all tests can be very time-consuming, so you may prefer to run just a relevant subset of tests when developing locally. The easiest way to do this is to rely on pytest's compatibility with unittest, so you can just run python -m unittest econml.tests.test_module to run all tests in a given module, or python -m unittest econml.tests.test_module.TestClass to run all tests in a given class. You can also run python -m unittest econml.tests.test_module.TestClass.test_method to run a single test method.

Generating the documentation

This project's documentation is generated via Sphinx. Note that we use graphviz's dot application to produce some of the images in our documentation, so you should make sure that dot is installed and in your path.

To generate a local copy of the documentation from a clone of this repository, just run python setup.py build_sphinx -W -E -a, which will build the documentation and place it under the build/sphinx/html path.

The reStructuredText files that make up the documentation are stored in the docs directory; module documentation is automatically generated by the Sphinx build process.

Release process

We use GitHub Actions to build and publish the package and documentation. To create a new release, an admin should perform the following steps:

  1. Update the version number in econml/_version.py and add a mention of the new version in the news section of this file and commit the changes.
  2. Manually run the publish_package.yml workflow to build and publish the package to PyPI.
  3. Manually run the publish_docs.yml workflow to build and publish the documentation.
  4. Under https://github.com/py-why/EconML/releases, create a new release with a corresponding tag, and update the release notes.

Blogs and Publications

Citation

If you use EconML in your research, please cite us as follows:

Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/py-why/EconML, 2019. Version 0.x.

BibTex:

@misc{econml,
  author={Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, Vasilis Syrgkanis},
  title={{EconML}: {A Python Package for ML-Based Heterogeneous Treatment Effects Estimation}},
  howpublished={https://github.com/py-why/EconML},
  note={Version 0.x},
  year={2019}
}

Contributing and Feedback

This project welcomes contributions and suggestions. We use the DCO bot to enforce a Developer Certificate of Origin which requires users to sign-off on their commits. This is a simple way to certify that you wrote or otherwise have the right to submit the code you are contributing to the project. Git provides a -s command line option to include this automatically when you commit via git commit.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the PyWhy Code of Conduct.

Community

pywhy-logo

EconML is a part of PyWhy, an organization with a mission to build an open-source ecosystem for causal machine learning.

PyWhy also has a Discord, which serves as a space for like-minded casual machine learning researchers and practitioners of all experience levels to come together to ask and answer questions, discuss new features, and share ideas.

We invite you to join us at regular office hours and community calls in the Discord.

References

Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1, 133-161, 2021.

X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika 108.2, 299-319, 2021.

V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 2019. (Spotlight Presentation)

D. Foster, V. Syrgkanis. Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019. (Best Paper Award)

M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.

S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.

S. Athey, J. Tibshirani, S. Wager. Generalized random forests. Annals of Statistics, 47, no. 2, 1148--1178, 2019.

V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.

S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv preprint arXiv:1608.00060, 2016.

Dudik, M., Erhan, D., Langford, J., & Li, L. Doubly robust policy evaluation and optimization. Statistical Science, 29(4), 485-511, 2014.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

econml-0.15.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

econml-0.15.1-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

econml-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

econml-0.15.1-cp312-cp312-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

econml-0.15.1-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

econml-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

econml-0.15.1-cp311-cp311-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

econml-0.15.1-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

econml-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

econml-0.15.1-cp310-cp310-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

econml-0.15.1-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

econml-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

econml-0.15.1-cp39-cp39-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

econml-0.15.1-cp38-cp38-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

econml-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

econml-0.15.1-cp38-cp38-macosx_11_0_arm64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file econml-0.15.1.tar.gz.

File metadata

  • Download URL: econml-0.15.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1.tar.gz
Algorithm Hash digest
SHA256 0aa22baf38ad3a38b1ae8c08bc868d4aa04dabda334352661e7d330eb3c2c531
MD5 5227600f7f64eb6714b390d0f6ca2d64
BLAKE2b-256 57f6e810a455705824b3db88f1f07c00e56d18f93aeae450d8defcb7f764bd57

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7b39f232f498cade3a664a6b9450d321d1568074cab626e2433fb3efb7f9fbc2
MD5 39335bbe5de0d0e069c6e233ca6827ba
BLAKE2b-256 67a538d773bcb54b50c5fbb9a69f035c616fe4d2db76adf307bc2ea70eb2a268

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de7674b42e695a2a5f017722dd255e31c93fb36347aa628aaecb55c8c6880c1a
MD5 bd79fe5cd3b6ff0c0c7fb8d7129eb5a5
BLAKE2b-256 4ca90962ee5a1054442af8716a888109652cbaf2228193bf1e6e2ca8156711be

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b06d5d897dab7474856b2b8c2e37f2ac9d229108aad1c083ecdb676d5c8b00a6
MD5 d4290d752cd63cea809f0524bfe033ab
BLAKE2b-256 3e682e09009a20761044b27fd7a3d81c24d7f5a3258056b2d02a1cbb2645393e

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2ba1e945f2564abeb8f43804fbddc5a891489ea69c1c41f4822825b449bdf464
MD5 9eadd0811282bde10848da1d7290fe8a
BLAKE2b-256 fc3c1ef986d9988e7c6a22724981ac0c8f88f9fb1d1eda6fd22ae30cf4a8fe6b

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f17c372e36515c4b653f0cbf33a3444d3d96458facf7549f4398ce0b488c864
MD5 52fda8eaa3e84bf900035d8cd1757935
BLAKE2b-256 589cd58483dcc3fc0c979be6d32a62c16cfa746efa81b3a35be1bf1c75c7e1a2

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a1a9b243b96a56d5c67429a800b41f8473ed56cb0041b375920f5b4527c735d2
MD5 58cc740cdecdf36568a552c31ace3695
BLAKE2b-256 f845b55c1b1792addf56dbd301a850a20a9878eeeafb73c8df98f0d50ec84fe9

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f763011adbf07ce82b32ff89e26fb329772d352370adc3fafa8dac834e09a93d
MD5 30007d58a34da556e11fd885db34c478
BLAKE2b-256 68d78db81b9f46df0e3343d949d1d7d80a687098dc690221d1f32cc635de87f1

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d6ac7f02172fb1becceab8a06706cd7d3433a112614c11bdd6657abc6505895
MD5 dcb8162de2deee768d7d79a7e98f1be2
BLAKE2b-256 0103e0e1129148934672f49897b1347de1f3a375f844b5dc5ab610d135b6812c

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5237e4b07c8ea6c42dad9c376f97dcfc85fdc20a7c3371444404f4850926f45a
MD5 fb4b6eb41a6a43dba68f5be4dae5c6e6
BLAKE2b-256 5d534cdf23fb470ce7a5f42fc9afac1c25c4136f66b15516295bff9286ed37e9

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2a94d93c9566451ca8da2438717dfcdf96292f3aab9c31dce88529466d388121
MD5 18e8725b514c480c9cb65841a1fb39ca
BLAKE2b-256 e3297bc2df7cd64e223c6cf2ef4c95346e5f9dda167ac0d9b0cf323cd78a46a4

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67fac2c3b266d136a402ed39fe7cbc321fdad169dcfd3852e70b769c368b91ff
MD5 dc8d6d0c0ee3a7ac8f97e854f1f29ab1
BLAKE2b-256 cf5553bf237dd3e7fd0f879ae27b3efd632f70c52f7016dba37c42b192946f20

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 069459983f4bef816cb029809bd5473586d9c27cdca505919937b096bbef22a6
MD5 511160bf1dcfa4f38632aa30a8772e77
BLAKE2b-256 cc1342ef423ce3f93c7412296f5eced343e9a12e60a2ceb1ea6b8dc3e85bf793

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: econml-0.15.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for econml-0.15.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 da7b4af5ef8b5ade8021a51d180ceeb5a9e01840b809241a41e090f8d0eedee3
MD5 bd5bd6331e9f791b68c34912121604fd
BLAKE2b-256 5d7965b0d577f695e8f5512f2f04947e72c08bc2bcb8ed139baedb91350ac543

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b8804aaf9db9eefafedc17229980bf3f9f3718b9806e83fd1340b8bcbf02c00c
MD5 20331a475caa02368a901032ff9bb570
BLAKE2b-256 ff2d1e23d92a1ede33309292e2ef75525708eefc4480d10cdbb34639e3d52393

See more details on using hashes here.

File details

Details for the file econml-0.15.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for econml-0.15.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 633b8da2fce23e8fdabb0f6aa714f1f9d39ab693c2889dbf0514487280661662
MD5 6e3cd68bdc13860276161202a24ba7ca
BLAKE2b-256 19000f25587924797d835801a0b3af0935395908590722e5884d696710fd149d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page